| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdschrmulg.1 |
|- C = ( chr ` R ) |
| 2 |
|
dvdschrmulg.2 |
|- B = ( Base ` R ) |
| 3 |
|
dvdschrmulg.3 |
|- .x. = ( .g ` R ) |
| 4 |
|
dvdschrmulg.4 |
|- .0. = ( 0g ` R ) |
| 5 |
|
simp1 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> R e. Ring ) |
| 6 |
|
dvdszrcl |
|- ( C || N -> ( C e. ZZ /\ N e. ZZ ) ) |
| 7 |
6
|
simprd |
|- ( C || N -> N e. ZZ ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> N e. ZZ ) |
| 9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 10 |
2 9
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 11 |
5 10
|
syl |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( 1r ` R ) e. B ) |
| 12 |
|
simp3 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> A e. B ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
2 3 13
|
mulgass2 |
|- ( ( R e. Ring /\ ( N e. ZZ /\ ( 1r ` R ) e. B /\ A e. B ) ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) ) |
| 15 |
5 8 11 12 14
|
syl13anc |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) ) |
| 16 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 17 |
5 16
|
syl |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> R e. Grp ) |
| 18 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 19 |
18 9 1
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 20 |
|
simp2 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> C || N ) |
| 21 |
19 20
|
eqbrtrid |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( od ` R ) ` ( 1r ` R ) ) || N ) |
| 22 |
2 18 3 4
|
oddvdsi |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B /\ ( ( od ` R ) ` ( 1r ` R ) ) || N ) -> ( N .x. ( 1r ` R ) ) = .0. ) |
| 23 |
17 11 21 22
|
syl3anc |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. ( 1r ` R ) ) = .0. ) |
| 24 |
23
|
oveq1d |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = ( .0. ( .r ` R ) A ) ) |
| 25 |
2 13 4
|
ringlz |
|- ( ( R e. Ring /\ A e. B ) -> ( .0. ( .r ` R ) A ) = .0. ) |
| 26 |
25
|
3adant2 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( .0. ( .r ` R ) A ) = .0. ) |
| 27 |
24 26
|
eqtrd |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( N .x. ( 1r ` R ) ) ( .r ` R ) A ) = .0. ) |
| 28 |
2 13 9
|
ringlidm |
|- ( ( R e. Ring /\ A e. B ) -> ( ( 1r ` R ) ( .r ` R ) A ) = A ) |
| 29 |
28
|
3adant2 |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( ( 1r ` R ) ( .r ` R ) A ) = A ) |
| 30 |
29
|
oveq2d |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. ( ( 1r ` R ) ( .r ` R ) A ) ) = ( N .x. A ) ) |
| 31 |
15 27 30
|
3eqtr3rd |
|- ( ( R e. Ring /\ C || N /\ A e. B ) -> ( N .x. A ) = .0. ) |