Metamath Proof Explorer


Theorem dvdscmul

Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in ApostolNT p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdscmul
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) )

Proof

Step Hyp Ref Expression
1 3simpc
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) )
2 zmulcl
 |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ )
3 2 3adant3
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ )
4 zmulcl
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ )
5 4 3adant2
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ )
6 3 5 jca
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) )
7 simpr
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> x e. ZZ )
8 zcn
 |-  ( x e. ZZ -> x e. CC )
9 zcn
 |-  ( K e. ZZ -> K e. CC )
10 zcn
 |-  ( M e. ZZ -> M e. CC )
11 mul12
 |-  ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) )
12 8 9 10 11 syl3an
 |-  ( ( x e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) )
13 12 3coml
 |-  ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) )
14 13 3expa
 |-  ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) )
15 14 3adantl3
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) )
16 oveq2
 |-  ( ( x x. M ) = N -> ( K x. ( x x. M ) ) = ( K x. N ) )
17 15 16 sylan9eq
 |-  ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) /\ ( x x. M ) = N ) -> ( x x. ( K x. M ) ) = ( K x. N ) )
18 17 ex
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( x x. ( K x. M ) ) = ( K x. N ) ) )
19 1 6 7 18 dvds1lem
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) )
20 19 3coml
 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) )