Step |
Hyp |
Ref |
Expression |
1 |
|
3simpc |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
2 |
|
zmulcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
3 |
2
|
3adant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ ) |
4 |
|
zmulcl |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
5 |
4
|
3adant2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
6 |
3 5
|
jca |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
7 |
|
simpr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> x e. ZZ ) |
8 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
9 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
10 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
11 |
|
mul12 |
|- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
12 |
8 9 10 11
|
syl3an |
|- ( ( x e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
13 |
12
|
3coml |
|- ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
14 |
13
|
3expa |
|- ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
15 |
14
|
3adantl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. ( K x. M ) ) = ( K x. ( x x. M ) ) ) |
16 |
|
oveq2 |
|- ( ( x x. M ) = N -> ( K x. ( x x. M ) ) = ( K x. N ) ) |
17 |
15 16
|
sylan9eq |
|- ( ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) /\ ( x x. M ) = N ) -> ( x x. ( K x. M ) ) = ( K x. N ) ) |
18 |
17
|
ex |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( x x. ( K x. M ) ) = ( K x. N ) ) ) |
19 |
1 6 7 18
|
dvds1lem |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
20 |
19
|
3coml |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |