| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant3 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant2 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							jca | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3coml | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant3r | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ )  | 
						
						
							| 10 | 
							
								
							 | 
							zcn | 
							 |-  ( x e. ZZ -> x e. CC )  | 
						
						
							| 11 | 
							
								
							 | 
							zcn | 
							 |-  ( M e. ZZ -> M e. CC )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							anim12i | 
							 |-  ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) )  | 
						
						
							| 13 | 
							
								
							 | 
							zcn | 
							 |-  ( N e. ZZ -> N e. CC )  | 
						
						
							| 14 | 
							
								
							 | 
							zcn | 
							 |-  ( K e. ZZ -> K e. CC )  | 
						
						
							| 15 | 
							
								14
							 | 
							anim1i | 
							 |-  ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							mul12 | 
							 |-  ( ( K e. CC /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant1r | 
							 |-  ( ( ( K e. CC /\ K =/= 0 ) /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3expb | 
							 |-  ( ( ( K e. CC /\ K =/= 0 ) /\ ( x e. CC /\ M e. CC ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ancoms | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							3adant2 | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq1d | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. ( K x. M ) ) = ( K x. N ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC )  | 
						
						
							| 23 | 
							
								
							 | 
							mulcan | 
							 |-  ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl3an1 | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							bitr3d | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 26 | 
							
								12 13 15 25
							 | 
							syl3an | 
							 |-  ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3expb | 
							 |-  ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3impa | 
							 |-  ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							3coml | 
							 |-  ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3expia | 
							 |-  ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							3impb | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							imp | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							biimpd | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) -> ( x x. M ) = N ) )  | 
						
						
							| 34 | 
							
								7 8 9 33
							 | 
							dvds1lem | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) -> M || N ) )  | 
						
						
							| 35 | 
							
								
							 | 
							dvdscmul | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3adant3r | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							impbid | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) <-> M || N ) )  |