Step |
Hyp |
Ref |
Expression |
1 |
|
zmulcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
2 |
1
|
3adant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. M ) e. ZZ ) |
3 |
|
zmulcl |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
4 |
3
|
3adant2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
5 |
2 4
|
jca |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
6 |
5
|
3coml |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
7 |
6
|
3adant3r |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) e. ZZ /\ ( K x. N ) e. ZZ ) ) |
8 |
|
3simpa |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
9 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ ) |
10 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
11 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
12 |
10 11
|
anim12i |
|- ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) ) |
13 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
14 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
15 |
14
|
anim1i |
|- ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) ) |
16 |
|
mul12 |
|- ( ( K e. CC /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
17 |
16
|
3adant1r |
|- ( ( ( K e. CC /\ K =/= 0 ) /\ x e. CC /\ M e. CC ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
18 |
17
|
3expb |
|- ( ( ( K e. CC /\ K =/= 0 ) /\ ( x e. CC /\ M e. CC ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
19 |
18
|
ancoms |
|- ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
20 |
19
|
3adant2 |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( K x. ( x x. M ) ) = ( x x. ( K x. M ) ) ) |
21 |
20
|
eqeq1d |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. ( K x. M ) ) = ( K x. N ) ) ) |
22 |
|
mulcl |
|- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC ) |
23 |
|
mulcan |
|- ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
24 |
22 23
|
syl3an1 |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. ( x x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
25 |
21 24
|
bitr3d |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
26 |
12 13 15 25
|
syl3an |
|- ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
27 |
26
|
3expb |
|- ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
28 |
27
|
3impa |
|- ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
29 |
28
|
3coml |
|- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
30 |
29
|
3expia |
|- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) ) |
31 |
30
|
3impb |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) ) |
32 |
31
|
imp |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) <-> ( x x. M ) = N ) ) |
33 |
32
|
biimpd |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = ( K x. N ) -> ( x x. M ) = N ) ) |
34 |
7 8 9 33
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) -> M || N ) ) |
35 |
|
dvdscmul |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
36 |
35
|
3adant3r |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( K x. M ) || ( K x. N ) ) ) |
37 |
34 36
|
impbid |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( K x. M ) || ( K x. N ) <-> M || N ) ) |