Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( x = A -> ( x || N <-> A || N ) ) |
2 |
1
|
elrab |
|- ( A e. { x e. NN | x || N } <-> ( A e. NN /\ A || N ) ) |
3 |
|
nndivdvds |
|- ( ( N e. NN /\ A e. NN ) -> ( A || N <-> ( N / A ) e. NN ) ) |
4 |
3
|
biimpd |
|- ( ( N e. NN /\ A e. NN ) -> ( A || N -> ( N / A ) e. NN ) ) |
5 |
4
|
expcom |
|- ( A e. NN -> ( N e. NN -> ( A || N -> ( N / A ) e. NN ) ) ) |
6 |
5
|
com23 |
|- ( A e. NN -> ( A || N -> ( N e. NN -> ( N / A ) e. NN ) ) ) |
7 |
6
|
imp |
|- ( ( A e. NN /\ A || N ) -> ( N e. NN -> ( N / A ) e. NN ) ) |
8 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
9 |
8
|
anim1ci |
|- ( ( A e. NN /\ A || N ) -> ( A || N /\ A =/= 0 ) ) |
10 |
|
divconjdvds |
|- ( ( A || N /\ A =/= 0 ) -> ( N / A ) || N ) |
11 |
9 10
|
syl |
|- ( ( A e. NN /\ A || N ) -> ( N / A ) || N ) |
12 |
7 11
|
jctird |
|- ( ( A e. NN /\ A || N ) -> ( N e. NN -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) ) |
13 |
2 12
|
sylbi |
|- ( A e. { x e. NN | x || N } -> ( N e. NN -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) ) |
14 |
13
|
impcom |
|- ( ( N e. NN /\ A e. { x e. NN | x || N } ) -> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) |
15 |
|
breq1 |
|- ( x = ( N / A ) -> ( x || N <-> ( N / A ) || N ) ) |
16 |
15
|
elrab |
|- ( ( N / A ) e. { x e. NN | x || N } <-> ( ( N / A ) e. NN /\ ( N / A ) || N ) ) |
17 |
14 16
|
sylibr |
|- ( ( N e. NN /\ A e. { x e. NN | x || N } ) -> ( N / A ) e. { x e. NN | x || N } ) |