| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsabseq |
|- ( ( M || N /\ N || M ) -> ( abs ` M ) = ( abs ` N ) ) |
| 2 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 3 |
|
nn0ge0 |
|- ( M e. NN0 -> 0 <_ M ) |
| 4 |
2 3
|
absidd |
|- ( M e. NN0 -> ( abs ` M ) = M ) |
| 5 |
4
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( abs ` M ) = M ) |
| 6 |
5
|
eqcomd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> M = ( abs ` M ) ) |
| 7 |
6
|
adantr |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> M = ( abs ` M ) ) |
| 8 |
|
simpr |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 9 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 10 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 11 |
9 10
|
absidd |
|- ( N e. NN0 -> ( abs ` N ) = N ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( abs ` N ) = N ) |
| 13 |
7 8 12
|
3eqtrd |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( abs ` M ) = ( abs ` N ) ) -> M = N ) |
| 14 |
1 13
|
sylan2 |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ ( M || N /\ N || M ) ) -> M = N ) |