| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. ZZ ) |
| 2 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
| 3 |
2
|
3ad2ant3 |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( N - M ) e. NN0 ) |
| 4 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( N - M ) e. NN0 ) -> ( A ^ ( N - M ) ) e. ZZ ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( N - M ) ) e. ZZ ) |
| 6 |
|
zexpcl |
|- ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) |
| 7 |
6
|
3adant3 |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) e. ZZ ) |
| 8 |
|
dvdsmul2 |
|- ( ( ( A ^ ( N - M ) ) e. ZZ /\ ( A ^ M ) e. ZZ ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
| 10 |
1
|
zcnd |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. CC ) |
| 11 |
|
simp2 |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. NN0 ) |
| 12 |
10 11 3
|
expaddd |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) ) |
| 13 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> N e. CC ) |
| 15 |
11
|
nn0cnd |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. CC ) |
| 16 |
14 15
|
npcand |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( N - M ) + M ) = N ) |
| 17 |
16
|
oveq2d |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( A ^ N ) ) |
| 18 |
12 17
|
eqtr3d |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) = ( A ^ N ) ) |
| 19 |
9 18
|
breqtrd |
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( A ^ N ) ) |