Metamath Proof Explorer


Theorem dvdsexp

Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion dvdsexp
|- ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( A ^ N ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. ZZ )
2 uznn0sub
 |-  ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 )
3 2 3ad2ant3
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( N - M ) e. NN0 )
4 zexpcl
 |-  ( ( A e. ZZ /\ ( N - M ) e. NN0 ) -> ( A ^ ( N - M ) ) e. ZZ )
5 1 3 4 syl2anc
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( N - M ) ) e. ZZ )
6 zexpcl
 |-  ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ )
7 6 3adant3
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) e. ZZ )
8 dvdsmul2
 |-  ( ( ( A ^ ( N - M ) ) e. ZZ /\ ( A ^ M ) e. ZZ ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) )
9 5 7 8 syl2anc
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) )
10 1 zcnd
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> A e. CC )
11 simp2
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. NN0 )
12 10 11 3 expaddd
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) )
13 eluzelcn
 |-  ( N e. ( ZZ>= ` M ) -> N e. CC )
14 13 3ad2ant3
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> N e. CC )
15 11 nn0cnd
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> M e. CC )
16 14 15 npcand
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( N - M ) + M ) = N )
17 16 oveq2d
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ ( ( N - M ) + M ) ) = ( A ^ N ) )
18 12 17 eqtr3d
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( A ^ ( N - M ) ) x. ( A ^ M ) ) = ( A ^ N ) )
19 9 18 breqtrd
 |-  ( ( A e. ZZ /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) || ( A ^ N ) )