| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divides |  |-  ( ( K e. ZZ /\ M e. ZZ ) -> ( K || M <-> E. m e. ZZ ( m x. K ) = M ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( K || M <-> E. m e. ZZ ( m x. K ) = M ) ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K e. ZZ ) | 
						
							| 4 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> N e. NN0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> N e. NN0 ) | 
						
							| 7 |  | zexpcl |  |-  ( ( K e. ZZ /\ N e. NN0 ) -> ( K ^ N ) e. ZZ ) | 
						
							| 8 | 3 6 7 | syl2anc |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( K ^ N ) e. ZZ ) | 
						
							| 9 |  | simpr |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> m e. ZZ ) | 
						
							| 10 |  | zexpcl |  |-  ( ( m e. ZZ /\ N e. NN0 ) -> ( m ^ N ) e. ZZ ) | 
						
							| 11 | 9 6 10 | syl2anc |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( m ^ N ) e. ZZ ) | 
						
							| 12 | 11 8 | zmulcld |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m ^ N ) x. ( K ^ N ) ) e. ZZ ) | 
						
							| 13 |  | simpl3 |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> N e. NN ) | 
						
							| 14 |  | iddvdsexp |  |-  ( ( K e. ZZ /\ N e. NN ) -> K || ( K ^ N ) ) | 
						
							| 15 | 3 13 14 | syl2anc |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( K ^ N ) ) | 
						
							| 16 |  | dvdsmul2 |  |-  ( ( ( m ^ N ) e. ZZ /\ ( K ^ N ) e. ZZ ) -> ( K ^ N ) || ( ( m ^ N ) x. ( K ^ N ) ) ) | 
						
							| 17 | 11 8 16 | syl2anc |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( K ^ N ) || ( ( m ^ N ) x. ( K ^ N ) ) ) | 
						
							| 18 | 3 8 12 15 17 | dvdstrd |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( ( m ^ N ) x. ( K ^ N ) ) ) | 
						
							| 19 |  | zcn |  |-  ( m e. ZZ -> m e. CC ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> m e. CC ) | 
						
							| 21 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> K e. CC ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K e. CC ) | 
						
							| 24 | 20 23 6 | mulexpd |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m x. K ) ^ N ) = ( ( m ^ N ) x. ( K ^ N ) ) ) | 
						
							| 25 | 18 24 | breqtrrd |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> K || ( ( m x. K ) ^ N ) ) | 
						
							| 26 |  | oveq1 |  |-  ( ( m x. K ) = M -> ( ( m x. K ) ^ N ) = ( M ^ N ) ) | 
						
							| 27 | 26 | breq2d |  |-  ( ( m x. K ) = M -> ( K || ( ( m x. K ) ^ N ) <-> K || ( M ^ N ) ) ) | 
						
							| 28 | 25 27 | syl5ibcom |  |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) /\ m e. ZZ ) -> ( ( m x. K ) = M -> K || ( M ^ N ) ) ) | 
						
							| 29 | 28 | rexlimdva |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( E. m e. ZZ ( m x. K ) = M -> K || ( M ^ N ) ) ) | 
						
							| 30 | 2 29 | sylbid |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. NN ) -> ( K || M -> K || ( M ^ N ) ) ) |