Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( A = B -> ( A || x <-> B || x ) ) |
2 |
1
|
ralrimivw |
|- ( A = B -> A. x e. NN0 ( A || x <-> B || x ) ) |
3 |
|
simpll |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A e. NN0 ) |
4 |
|
simplr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B e. NN0 ) |
5 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
6 |
|
iddvds |
|- ( B e. ZZ -> B || B ) |
7 |
5 6
|
syl |
|- ( B e. NN0 -> B || B ) |
8 |
7
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || B ) |
9 |
|
breq2 |
|- ( x = B -> ( A || x <-> A || B ) ) |
10 |
|
breq2 |
|- ( x = B -> ( B || x <-> B || B ) ) |
11 |
9 10
|
bibi12d |
|- ( x = B -> ( ( A || x <-> B || x ) <-> ( A || B <-> B || B ) ) ) |
12 |
11
|
rspcva |
|- ( ( B e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
13 |
12
|
adantll |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
14 |
8 13
|
mpbird |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || B ) |
15 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
16 |
|
iddvds |
|- ( A e. ZZ -> A || A ) |
17 |
15 16
|
syl |
|- ( A e. NN0 -> A || A ) |
18 |
17
|
ad2antrr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || A ) |
19 |
|
breq2 |
|- ( x = A -> ( A || x <-> A || A ) ) |
20 |
|
breq2 |
|- ( x = A -> ( B || x <-> B || A ) ) |
21 |
19 20
|
bibi12d |
|- ( x = A -> ( ( A || x <-> B || x ) <-> ( A || A <-> B || A ) ) ) |
22 |
21
|
rspcva |
|- ( ( A e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
23 |
22
|
adantlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
24 |
18 23
|
mpbid |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || A ) |
25 |
|
dvdseq |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( A || B /\ B || A ) ) -> A = B ) |
26 |
3 4 14 24 25
|
syl22anc |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A = B ) |
27 |
26
|
ex |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A. x e. NN0 ( A || x <-> B || x ) -> A = B ) ) |
28 |
2 27
|
impbid2 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. x e. NN0 ( A || x <-> B || x ) ) ) |