| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( A = B -> ( A || x <-> B || x ) ) |
| 2 |
1
|
ralrimivw |
|- ( A = B -> A. x e. NN0 ( A || x <-> B || x ) ) |
| 3 |
|
simpll |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A e. NN0 ) |
| 4 |
|
simplr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B e. NN0 ) |
| 5 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
| 6 |
|
iddvds |
|- ( B e. ZZ -> B || B ) |
| 7 |
5 6
|
syl |
|- ( B e. NN0 -> B || B ) |
| 8 |
7
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || B ) |
| 9 |
|
breq2 |
|- ( x = B -> ( A || x <-> A || B ) ) |
| 10 |
|
breq2 |
|- ( x = B -> ( B || x <-> B || B ) ) |
| 11 |
9 10
|
bibi12d |
|- ( x = B -> ( ( A || x <-> B || x ) <-> ( A || B <-> B || B ) ) ) |
| 12 |
11
|
rspcva |
|- ( ( B e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
| 13 |
12
|
adantll |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || B <-> B || B ) ) |
| 14 |
8 13
|
mpbird |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || B ) |
| 15 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 16 |
|
iddvds |
|- ( A e. ZZ -> A || A ) |
| 17 |
15 16
|
syl |
|- ( A e. NN0 -> A || A ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A || A ) |
| 19 |
|
breq2 |
|- ( x = A -> ( A || x <-> A || A ) ) |
| 20 |
|
breq2 |
|- ( x = A -> ( B || x <-> B || A ) ) |
| 21 |
19 20
|
bibi12d |
|- ( x = A -> ( ( A || x <-> B || x ) <-> ( A || A <-> B || A ) ) ) |
| 22 |
21
|
rspcva |
|- ( ( A e. NN0 /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
| 23 |
22
|
adantlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> ( A || A <-> B || A ) ) |
| 24 |
18 23
|
mpbid |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> B || A ) |
| 25 |
|
dvdseq |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( A || B /\ B || A ) ) -> A = B ) |
| 26 |
3 4 14 24 25
|
syl22anc |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ A. x e. NN0 ( A || x <-> B || x ) ) -> A = B ) |
| 27 |
26
|
ex |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A. x e. NN0 ( A || x <-> B || x ) -> A = B ) ) |
| 28 |
2 27
|
impbid2 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. x e. NN0 ( A || x <-> B || x ) ) ) |