| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = K -> ( ! ` x ) = ( ! ` K ) ) | 
						
							| 2 | 1 | breq2d |  |-  ( x = K -> ( K || ( ! ` x ) <-> K || ( ! ` K ) ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( x = K -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` K ) ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( x = y -> ( ! ` x ) = ( ! ` y ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( x = y -> ( K || ( ! ` x ) <-> K || ( ! ` y ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( x = y -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` y ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = ( y + 1 ) -> ( ! ` x ) = ( ! ` ( y + 1 ) ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( x = ( y + 1 ) -> ( K || ( ! ` x ) <-> K || ( ! ` ( y + 1 ) ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( x = ( y + 1 ) -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` ( y + 1 ) ) ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( x = N -> ( ! ` x ) = ( ! ` N ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( x = N -> ( K || ( ! ` x ) <-> K || ( ! ` N ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = N -> ( ( K e. NN -> K || ( ! ` x ) ) <-> ( K e. NN -> K || ( ! ` N ) ) ) ) | 
						
							| 13 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 14 | 13 | faccld |  |-  ( K e. NN -> ( ! ` ( K - 1 ) ) e. NN ) | 
						
							| 15 | 14 | nnzd |  |-  ( K e. NN -> ( ! ` ( K - 1 ) ) e. ZZ ) | 
						
							| 16 |  | nnz |  |-  ( K e. NN -> K e. ZZ ) | 
						
							| 17 |  | dvdsmul2 |  |-  ( ( ( ! ` ( K - 1 ) ) e. ZZ /\ K e. ZZ ) -> K || ( ( ! ` ( K - 1 ) ) x. K ) ) | 
						
							| 18 | 15 16 17 | syl2anc |  |-  ( K e. NN -> K || ( ( ! ` ( K - 1 ) ) x. K ) ) | 
						
							| 19 |  | facnn2 |  |-  ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) | 
						
							| 20 | 18 19 | breqtrrd |  |-  ( K e. NN -> K || ( ! ` K ) ) | 
						
							| 21 | 16 | adantl |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> K e. ZZ ) | 
						
							| 22 |  | elnnuz |  |-  ( K e. NN <-> K e. ( ZZ>= ` 1 ) ) | 
						
							| 23 |  | uztrn |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` 1 ) ) -> y e. ( ZZ>= ` 1 ) ) | 
						
							| 24 | 22 23 | sylan2b |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. ( ZZ>= ` 1 ) ) | 
						
							| 25 |  | elnnuz |  |-  ( y e. NN <-> y e. ( ZZ>= ` 1 ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. NN ) | 
						
							| 27 | 26 | nnnn0d |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. NN0 ) | 
						
							| 28 | 27 | faccld |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` y ) e. NN ) | 
						
							| 29 | 28 | nnzd |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` y ) e. ZZ ) | 
						
							| 30 | 26 | nnzd |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> y e. ZZ ) | 
						
							| 31 | 30 | peano2zd |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( y + 1 ) e. ZZ ) | 
						
							| 32 |  | dvdsmultr1 |  |-  ( ( K e. ZZ /\ ( ! ` y ) e. ZZ /\ ( y + 1 ) e. ZZ ) -> ( K || ( ! ` y ) -> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) | 
						
							| 33 | 21 29 31 32 | syl3anc |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` y ) -> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) | 
						
							| 34 |  | facp1 |  |-  ( y e. NN0 -> ( ! ` ( y + 1 ) ) = ( ( ! ` y ) x. ( y + 1 ) ) ) | 
						
							| 35 | 27 34 | syl |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( ! ` ( y + 1 ) ) = ( ( ! ` y ) x. ( y + 1 ) ) ) | 
						
							| 36 | 35 | breq2d |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` ( y + 1 ) ) <-> K || ( ( ! ` y ) x. ( y + 1 ) ) ) ) | 
						
							| 37 | 33 36 | sylibrd |  |-  ( ( y e. ( ZZ>= ` K ) /\ K e. NN ) -> ( K || ( ! ` y ) -> K || ( ! ` ( y + 1 ) ) ) ) | 
						
							| 38 | 37 | ex |  |-  ( y e. ( ZZ>= ` K ) -> ( K e. NN -> ( K || ( ! ` y ) -> K || ( ! ` ( y + 1 ) ) ) ) ) | 
						
							| 39 | 38 | a2d |  |-  ( y e. ( ZZ>= ` K ) -> ( ( K e. NN -> K || ( ! ` y ) ) -> ( K e. NN -> K || ( ! ` ( y + 1 ) ) ) ) ) | 
						
							| 40 | 3 6 9 12 20 39 | uzind4i |  |-  ( N e. ( ZZ>= ` K ) -> ( K e. NN -> K || ( ! ` N ) ) ) | 
						
							| 41 | 40 | impcom |  |-  ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> K || ( ! ` N ) ) |