| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsflf1o.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
dvdsflf1o.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
dvdsflf1o.f |
|- F = ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) |-> ( N x. n ) ) |
| 4 |
|
breq2 |
|- ( x = ( N x. n ) -> ( N || x <-> N || ( N x. n ) ) ) |
| 5 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. NN ) |
| 6 |
|
nnmulcl |
|- ( ( N e. NN /\ n e. NN ) -> ( N x. n ) e. NN ) |
| 7 |
2 5 6
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. NN ) |
| 8 |
1 2
|
nndivred |
|- ( ph -> ( A / N ) e. RR ) |
| 9 |
|
fznnfl |
|- ( ( A / N ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
| 11 |
10
|
simplbda |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n <_ ( A / N ) ) |
| 12 |
5
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. NN ) |
| 13 |
12
|
nnred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. RR ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> A e. RR ) |
| 15 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N e. RR ) |
| 17 |
2
|
nngt0d |
|- ( ph -> 0 < N ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> 0 < N ) |
| 19 |
|
lemuldiv2 |
|- ( ( n e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
| 20 |
13 14 16 18 19
|
syl112anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
| 21 |
11 20
|
mpbird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ A ) |
| 22 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 23 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. ZZ ) |
| 24 |
|
zmulcl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( N x. n ) e. ZZ ) |
| 25 |
22 23 24
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ZZ ) |
| 26 |
|
flge |
|- ( ( A e. RR /\ ( N x. n ) e. ZZ ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
| 27 |
14 25 26
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
| 28 |
21 27
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ ( |_ ` A ) ) |
| 29 |
1
|
flcld |
|- ( ph -> ( |_ ` A ) e. ZZ ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( |_ ` A ) e. ZZ ) |
| 31 |
|
fznn |
|- ( ( |_ ` A ) e. ZZ -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
| 33 |
7 28 32
|
mpbir2and |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ( 1 ... ( |_ ` A ) ) ) |
| 34 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ n e. ZZ ) -> N || ( N x. n ) ) |
| 35 |
22 23 34
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N || ( N x. n ) ) |
| 36 |
4 33 35
|
elrabd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |
| 37 |
|
breq2 |
|- ( x = m -> ( N || x <-> N || m ) ) |
| 38 |
37
|
elrab |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ N || m ) ) |
| 39 |
38
|
simprbi |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> N || m ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N || m ) |
| 41 |
|
elrabi |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> m e. ( 1 ... ( |_ ` A ) ) ) |
| 42 |
41
|
adantl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. ( 1 ... ( |_ ` A ) ) ) |
| 43 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
| 44 |
42 43
|
syl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. NN ) |
| 45 |
2
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. NN ) |
| 46 |
|
nndivdvds |
|- ( ( m e. NN /\ N e. NN ) -> ( N || m <-> ( m / N ) e. NN ) ) |
| 47 |
44 45 46
|
syl2anc |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( N || m <-> ( m / N ) e. NN ) ) |
| 48 |
40 47
|
mpbid |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. NN ) |
| 49 |
|
fznnfl |
|- ( A e. RR -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
| 50 |
1 49
|
syl |
|- ( ph -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
| 51 |
50
|
simplbda |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m <_ A ) |
| 52 |
41 51
|
sylan2 |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m <_ A ) |
| 53 |
44
|
nnred |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. RR ) |
| 54 |
1
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> A e. RR ) |
| 55 |
15
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. RR ) |
| 56 |
17
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> 0 < N ) |
| 57 |
|
lediv1 |
|- ( ( m e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
| 58 |
53 54 55 56 57
|
syl112anc |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
| 59 |
52 58
|
mpbid |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) <_ ( A / N ) ) |
| 60 |
8
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( A / N ) e. RR ) |
| 61 |
|
fznnfl |
|- ( ( A / N ) e. RR -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
| 62 |
60 61
|
syl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
| 63 |
48 59 62
|
mpbir2and |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) ) |
| 64 |
44
|
nncnd |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. CC ) |
| 65 |
64
|
adantrl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> m e. CC ) |
| 66 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N e. CC ) |
| 68 |
12
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. CC ) |
| 69 |
68
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> n e. CC ) |
| 70 |
2
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N =/= 0 ) |
| 72 |
65 67 69 71
|
divmuld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( ( m / N ) = n <-> ( N x. n ) = m ) ) |
| 73 |
|
eqcom |
|- ( n = ( m / N ) <-> ( m / N ) = n ) |
| 74 |
|
eqcom |
|- ( m = ( N x. n ) <-> ( N x. n ) = m ) |
| 75 |
72 73 74
|
3bitr4g |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( n = ( m / N ) <-> m = ( N x. n ) ) ) |
| 76 |
3 36 63 75
|
f1o2d |
|- ( ph -> F : ( 1 ... ( |_ ` ( A / N ) ) ) -1-1-onto-> { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |