Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsflf1o.1 |
|- ( ph -> A e. RR ) |
2 |
|
dvdsflf1o.2 |
|- ( ph -> N e. NN ) |
3 |
|
dvdsflf1o.f |
|- F = ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) |-> ( N x. n ) ) |
4 |
|
breq2 |
|- ( x = ( N x. n ) -> ( N || x <-> N || ( N x. n ) ) ) |
5 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. NN ) |
6 |
|
nnmulcl |
|- ( ( N e. NN /\ n e. NN ) -> ( N x. n ) e. NN ) |
7 |
2 5 6
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. NN ) |
8 |
1 2
|
nndivred |
|- ( ph -> ( A / N ) e. RR ) |
9 |
|
fznnfl |
|- ( ( A / N ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( n e. NN /\ n <_ ( A / N ) ) ) ) |
11 |
10
|
simplbda |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n <_ ( A / N ) ) |
12 |
5
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. NN ) |
13 |
12
|
nnred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. RR ) |
14 |
1
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> A e. RR ) |
15 |
2
|
nnred |
|- ( ph -> N e. RR ) |
16 |
15
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N e. RR ) |
17 |
2
|
nngt0d |
|- ( ph -> 0 < N ) |
18 |
17
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> 0 < N ) |
19 |
|
lemuldiv2 |
|- ( ( n e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
20 |
13 14 16 18 19
|
syl112anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> n <_ ( A / N ) ) ) |
21 |
11 20
|
mpbird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ A ) |
22 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
23 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) -> n e. ZZ ) |
24 |
|
zmulcl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( N x. n ) e. ZZ ) |
25 |
22 23 24
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ZZ ) |
26 |
|
flge |
|- ( ( A e. RR /\ ( N x. n ) e. ZZ ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
27 |
14 25 26
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) <_ A <-> ( N x. n ) <_ ( |_ ` A ) ) ) |
28 |
21 27
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) <_ ( |_ ` A ) ) |
29 |
1
|
flcld |
|- ( ph -> ( |_ ` A ) e. ZZ ) |
30 |
29
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( |_ ` A ) e. ZZ ) |
31 |
|
fznn |
|- ( ( |_ ` A ) e. ZZ -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
32 |
30 31
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( ( N x. n ) e. ( 1 ... ( |_ ` A ) ) <-> ( ( N x. n ) e. NN /\ ( N x. n ) <_ ( |_ ` A ) ) ) ) |
33 |
7 28 32
|
mpbir2and |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. ( 1 ... ( |_ ` A ) ) ) |
34 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ n e. ZZ ) -> N || ( N x. n ) ) |
35 |
22 23 34
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> N || ( N x. n ) ) |
36 |
4 33 35
|
elrabd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> ( N x. n ) e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |
37 |
|
breq2 |
|- ( x = m -> ( N || x <-> N || m ) ) |
38 |
37
|
elrab |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ N || m ) ) |
39 |
38
|
simprbi |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> N || m ) |
40 |
39
|
adantl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N || m ) |
41 |
|
elrabi |
|- ( m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } -> m e. ( 1 ... ( |_ ` A ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. ( 1 ... ( |_ ` A ) ) ) |
43 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
44 |
42 43
|
syl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. NN ) |
45 |
2
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. NN ) |
46 |
|
nndivdvds |
|- ( ( m e. NN /\ N e. NN ) -> ( N || m <-> ( m / N ) e. NN ) ) |
47 |
44 45 46
|
syl2anc |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( N || m <-> ( m / N ) e. NN ) ) |
48 |
40 47
|
mpbid |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. NN ) |
49 |
|
fznnfl |
|- ( A e. RR -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
50 |
1 49
|
syl |
|- ( ph -> ( m e. ( 1 ... ( |_ ` A ) ) <-> ( m e. NN /\ m <_ A ) ) ) |
51 |
50
|
simplbda |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m <_ A ) |
52 |
41 51
|
sylan2 |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m <_ A ) |
53 |
44
|
nnred |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. RR ) |
54 |
1
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> A e. RR ) |
55 |
15
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> N e. RR ) |
56 |
17
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> 0 < N ) |
57 |
|
lediv1 |
|- ( ( m e. RR /\ A e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
58 |
53 54 55 56 57
|
syl112anc |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m <_ A <-> ( m / N ) <_ ( A / N ) ) ) |
59 |
52 58
|
mpbid |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) <_ ( A / N ) ) |
60 |
8
|
adantr |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( A / N ) e. RR ) |
61 |
|
fznnfl |
|- ( ( A / N ) e. RR -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
62 |
60 61
|
syl |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) <-> ( ( m / N ) e. NN /\ ( m / N ) <_ ( A / N ) ) ) ) |
63 |
48 59 62
|
mpbir2and |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> ( m / N ) e. ( 1 ... ( |_ ` ( A / N ) ) ) ) |
64 |
44
|
nncnd |
|- ( ( ph /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) -> m e. CC ) |
65 |
64
|
adantrl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> m e. CC ) |
66 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
67 |
66
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N e. CC ) |
68 |
12
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / N ) ) ) ) -> n e. CC ) |
69 |
68
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> n e. CC ) |
70 |
2
|
nnne0d |
|- ( ph -> N =/= 0 ) |
71 |
70
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> N =/= 0 ) |
72 |
65 67 69 71
|
divmuld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( ( m / N ) = n <-> ( N x. n ) = m ) ) |
73 |
|
eqcom |
|- ( n = ( m / N ) <-> ( m / N ) = n ) |
74 |
|
eqcom |
|- ( m = ( N x. n ) <-> ( N x. n ) = m ) |
75 |
72 73 74
|
3bitr4g |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` ( A / N ) ) ) /\ m e. { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) ) -> ( n = ( m / N ) <-> m = ( N x. n ) ) ) |
76 |
3 36 63 75
|
f1o2d |
|- ( ph -> F : ( 1 ... ( |_ ` ( A / N ) ) ) -1-1-onto-> { x e. ( 1 ... ( |_ ` A ) ) | N || x } ) |