Step |
Hyp |
Ref |
Expression |
1 |
|
bezout |
|- ( ( M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
2 |
1
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
3 |
|
dvds2ln |
|- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( K || M /\ K || N ) -> K || ( ( x x. M ) + ( y x. N ) ) ) ) |
4 |
3
|
3impia |
|- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> K || ( ( x x. M ) + ( y x. N ) ) ) |
5 |
4
|
3coml |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> K || ( ( x x. M ) + ( y x. N ) ) ) |
6 |
|
simp3l |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
7 |
|
simp12 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. ZZ ) |
8 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
9 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
10 |
|
mulcom |
|- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) = ( M x. x ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( x e. ZZ /\ M e. ZZ ) -> ( x x. M ) = ( M x. x ) ) |
12 |
6 7 11
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. M ) = ( M x. x ) ) |
13 |
|
simp3r |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
14 |
|
simp13 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) |
15 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
16 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
17 |
|
mulcom |
|- ( ( y e. CC /\ N e. CC ) -> ( y x. N ) = ( N x. y ) ) |
18 |
15 16 17
|
syl2an |
|- ( ( y e. ZZ /\ N e. ZZ ) -> ( y x. N ) = ( N x. y ) ) |
19 |
13 14 18
|
syl2anc |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( y x. N ) = ( N x. y ) ) |
20 |
12 19
|
oveq12d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. M ) + ( y x. N ) ) = ( ( M x. x ) + ( N x. y ) ) ) |
21 |
5 20
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> K || ( ( M x. x ) + ( N x. y ) ) ) |
22 |
|
breq2 |
|- ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( K || ( M gcd N ) <-> K || ( ( M x. x ) + ( N x. y ) ) ) ) |
23 |
21 22
|
syl5ibrcom |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) |
24 |
23
|
3expia |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> ( ( x e. ZZ /\ y e. ZZ ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) ) |
25 |
24
|
rexlimdvv |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || M /\ K || N ) ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) |
26 |
25
|
ex |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> K || ( M gcd N ) ) ) ) |
27 |
2 26
|
mpid |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M gcd N ) ) ) |