Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsgcd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M gcd N ) ) ) |
2 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
3 |
2
|
simpld |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
4 |
3
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
5 |
|
simp1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
6 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
8 |
7
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
9 |
|
simp2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
10 |
|
dvdstr |
|- ( ( K e. ZZ /\ ( M gcd N ) e. ZZ /\ M e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || M ) -> K || M ) ) |
11 |
5 8 9 10
|
syl3anc |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || M ) -> K || M ) ) |
12 |
4 11
|
mpan2d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> K || M ) ) |
13 |
2
|
simprd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
14 |
13
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
15 |
|
dvdstr |
|- ( ( K e. ZZ /\ ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || N ) -> K || N ) ) |
16 |
8 15
|
syld3an2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || N ) -> K || N ) ) |
17 |
14 16
|
mpan2d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> K || N ) ) |
18 |
12 17
|
jcad |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> ( K || M /\ K || N ) ) ) |
19 |
1 18
|
impbid |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) <-> K || ( M gcd N ) ) ) |