| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsgcdidd.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
dvdsgcdidd.2 |
|- ( ph -> N e. ZZ ) |
| 3 |
|
dvdsgcdidd.3 |
|- ( ph -> M || N ) |
| 4 |
2
|
zcnd |
|- ( ph -> N e. CC ) |
| 5 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
| 6 |
1
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 7 |
4 5 6
|
divcan1d |
|- ( ph -> ( ( N / M ) x. M ) = N ) |
| 8 |
7
|
oveq2d |
|- ( ph -> ( M gcd ( ( N / M ) x. M ) ) = ( M gcd N ) ) |
| 9 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 10 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 11 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 12 |
10 6 2 11
|
syl3anc |
|- ( ph -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 13 |
3 12
|
mpbid |
|- ( ph -> ( N / M ) e. ZZ ) |
| 14 |
9 13
|
gcdmultipled |
|- ( ph -> ( M gcd ( ( N / M ) x. M ) ) = M ) |
| 15 |
8 14
|
eqtr3d |
|- ( ph -> ( M gcd N ) = M ) |