Step |
Hyp |
Ref |
Expression |
1 |
|
dvds0 |
|- ( M e. ZZ -> M || 0 ) |
2 |
1
|
ad2antrr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || 0 ) |
3 |
|
oveq1 |
|- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
4 |
|
0z |
|- 0 e. ZZ |
5 |
|
lcmcom |
|- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) |
6 |
4 5
|
mpan2 |
|- ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) |
7 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
8 |
6 7
|
eqtr3d |
|- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
9 |
3 8
|
sylan9eqr |
|- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
10 |
9
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
11 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
12 |
|
lcm0val |
|- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
13 |
11 12
|
sylan9eqr |
|- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
14 |
13
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
15 |
10 14
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
16 |
2 15
|
breqtrrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || ( M lcm N ) ) |
17 |
|
dvds0 |
|- ( N e. ZZ -> N || 0 ) |
18 |
17
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || 0 ) |
19 |
18 15
|
breqtrrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || ( M lcm N ) ) |
20 |
16 19
|
jca |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
21 |
|
lcmcllem |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |
22 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
23 |
|
breq2 |
|- ( n = ( M lcm N ) -> ( M || n <-> M || ( M lcm N ) ) ) |
24 |
|
breq2 |
|- ( n = ( M lcm N ) -> ( N || n <-> N || ( M lcm N ) ) ) |
25 |
23 24
|
anbi12d |
|- ( n = ( M lcm N ) -> ( ( M || n /\ N || n ) <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
26 |
25
|
elrab3 |
|- ( ( M lcm N ) e. NN -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
27 |
22 26
|
syl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
28 |
21 27
|
mpbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
29 |
20 28
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |