| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvds0 |  |-  ( M e. ZZ -> M || 0 ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || 0 ) | 
						
							| 3 |  | oveq1 |  |-  ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) | 
						
							| 4 |  | 0z |  |-  0 e. ZZ | 
						
							| 5 |  | lcmcom |  |-  ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) | 
						
							| 7 |  | lcm0val |  |-  ( N e. ZZ -> ( N lcm 0 ) = 0 ) | 
						
							| 8 | 6 7 | eqtr3d |  |-  ( N e. ZZ -> ( 0 lcm N ) = 0 ) | 
						
							| 9 | 3 8 | sylan9eqr |  |-  ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 10 | 9 | adantll |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 11 |  | oveq2 |  |-  ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) | 
						
							| 12 |  | lcm0val |  |-  ( M e. ZZ -> ( M lcm 0 ) = 0 ) | 
						
							| 13 | 11 12 | sylan9eqr |  |-  ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 15 | 10 14 | jaodan |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) | 
						
							| 16 | 2 15 | breqtrrd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || ( M lcm N ) ) | 
						
							| 17 |  | dvds0 |  |-  ( N e. ZZ -> N || 0 ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || 0 ) | 
						
							| 19 | 18 15 | breqtrrd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || ( M lcm N ) ) | 
						
							| 20 | 16 19 | jca |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 21 |  | lcmcllem |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) | 
						
							| 22 |  | lcmn0cl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) | 
						
							| 23 |  | breq2 |  |-  ( n = ( M lcm N ) -> ( M || n <-> M || ( M lcm N ) ) ) | 
						
							| 24 |  | breq2 |  |-  ( n = ( M lcm N ) -> ( N || n <-> N || ( M lcm N ) ) ) | 
						
							| 25 | 23 24 | anbi12d |  |-  ( n = ( M lcm N ) -> ( ( M || n /\ N || n ) <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) | 
						
							| 26 | 25 | elrab3 |  |-  ( ( M lcm N ) e. NN -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) | 
						
							| 27 | 22 26 | syl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) | 
						
							| 28 | 21 27 | mpbid |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 29 | 20 28 | pm2.61dan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |