| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsabsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( abs ` N ) ) ) |
| 2 |
1
|
3adant3 |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N <-> M || ( abs ` N ) ) ) |
| 3 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 4 |
|
dvdsle |
|- ( ( M e. ZZ /\ ( abs ` N ) e. NN ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
| 5 |
3 4
|
sylan2 |
|- ( ( M e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
| 6 |
5
|
3impb |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
| 7 |
2 6
|
sylbid |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> M <_ ( abs ` N ) ) ) |