Step |
Hyp |
Ref |
Expression |
1 |
|
zabscl |
|- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
2 |
1
|
3anim1i |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
3 |
2
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
4 |
|
absdvdsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
5 |
4
|
3adant3 |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N <-> ( abs ` M ) || N ) ) |
6 |
5
|
biimpa |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) || N ) |
7 |
|
dvdsleabs |
|- ( ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
8 |
3 6 7
|
sylc |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) <_ ( abs ` N ) ) |
9 |
8
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |