Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { n e. ZZ | A. z e. { M , N } n || z } = { n e. ZZ | A. z e. { M , N } n || z } |
2 |
|
eqid |
|- { n e. ZZ | ( n || M /\ n || N ) } = { n e. ZZ | ( n || M /\ n || N ) } |
3 |
1 2
|
gcdcllem3 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) e. NN /\ ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M /\ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) ) |
4 |
3
|
simp3d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
5 |
|
gcdn0val |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
6 |
5
|
breq2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( K <_ ( M gcd N ) <-> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
7 |
4 6
|
sylibrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
8 |
7
|
com12 |
|- ( ( K e. ZZ /\ K || M /\ K || N ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> K <_ ( M gcd N ) ) ) |
9 |
8
|
3expb |
|- ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> K <_ ( M gcd N ) ) ) |
10 |
9
|
com12 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> K <_ ( M gcd N ) ) ) |
11 |
10
|
exp4b |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( K e. ZZ -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) ) |
12 |
11
|
com23 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) ) |
13 |
12
|
impcom |
|- ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) |
14 |
13
|
3impb |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) ) |
15 |
14
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |