| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdszrcl |
|- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
| 2 |
1
|
adantl |
|- ( ( M e. NN /\ M || N ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 3 |
|
dvdsval3 |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N mod M ) = 0 ) ) |
| 4 |
3
|
biimpd |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M || N -> ( N mod M ) = 0 ) ) |
| 5 |
4
|
expcom |
|- ( N e. ZZ -> ( M e. NN -> ( M || N -> ( N mod M ) = 0 ) ) ) |
| 6 |
5
|
impd |
|- ( N e. ZZ -> ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) ) |
| 7 |
6
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) ) |
| 8 |
2 7
|
mpcom |
|- ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) |