| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdszrcl |  |-  ( N || A -> ( N e. ZZ /\ A e. ZZ ) ) | 
						
							| 2 |  | dvdsmod0 |  |-  ( ( N e. NN /\ N || A ) -> ( A mod N ) = 0 ) | 
						
							| 3 | 2 | 3ad2antl2 |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ N || A ) -> ( A mod N ) = 0 ) | 
						
							| 4 | 3 | ex |  |-  ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( A mod N ) = 0 ) ) | 
						
							| 5 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN ) | 
						
							| 6 | 5 | 0expd |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 ^ B ) = 0 ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( 0 ^ B ) mod N ) = ( 0 mod N ) ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> A e. ZZ ) | 
						
							| 9 |  | 0zd |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> 0 e. ZZ ) | 
						
							| 10 |  | nnnn0 |  |-  ( B e. NN -> B e. NN0 ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> B e. NN0 ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN0 ) | 
						
							| 13 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> N e. RR+ ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> N e. RR+ ) | 
						
							| 16 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = 0 ) | 
						
							| 17 |  | 0mod |  |-  ( N e. RR+ -> ( 0 mod N ) = 0 ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 mod N ) = 0 ) | 
						
							| 19 | 16 18 | eqtr4d |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = ( 0 mod N ) ) | 
						
							| 20 |  | modexp |  |-  ( ( ( A e. ZZ /\ 0 e. ZZ ) /\ ( B e. NN0 /\ N e. RR+ ) /\ ( A mod N ) = ( 0 mod N ) ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) | 
						
							| 21 | 8 9 12 15 19 20 | syl221anc |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) | 
						
							| 22 | 7 21 19 | 3eqtr4d |  |-  ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( ( A mod N ) = 0 -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) | 
						
							| 24 | 4 23 | syld |  |-  ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) | 
						
							| 25 | 24 | 3exp |  |-  ( A e. ZZ -> ( N e. NN -> ( B e. NN -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) | 
						
							| 26 | 25 | com24 |  |-  ( A e. ZZ -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( N e. ZZ /\ A e. ZZ ) -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) | 
						
							| 28 | 1 27 | mpcom |  |-  ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) | 
						
							| 29 | 28 | 3imp31 |  |-  ( ( N e. NN /\ B e. NN /\ N || A ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |