Metamath Proof Explorer


Theorem dvdsmul2

Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsmul2
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) )

Proof

Step Hyp Ref Expression
1 zmulcl
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ )
2 eqid
 |-  ( M x. N ) = ( M x. N )
3 dvds0lem
 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) /\ ( M x. N ) = ( M x. N ) ) -> N || ( M x. N ) )
4 2 3 mpan2
 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) -> N || ( M x. N ) )
5 1 4 mpd3an3
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) )