| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( M e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant2 | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant1 | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							jca | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3adant3r | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ )  | 
						
						
							| 9 | 
							
								
							 | 
							zcn | 
							 |-  ( x e. ZZ -> x e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							zcn | 
							 |-  ( M e. ZZ -> M e. CC )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							anim12i | 
							 |-  ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) )  | 
						
						
							| 12 | 
							
								
							 | 
							zcn | 
							 |-  ( N e. ZZ -> N e. CC )  | 
						
						
							| 13 | 
							
								
							 | 
							zcn | 
							 |-  ( K e. ZZ -> K e. CC )  | 
						
						
							| 14 | 
							
								13
							 | 
							anim1i | 
							 |-  ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							mulass | 
							 |-  ( ( x e. CC /\ M e. CC /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3expa | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantrr | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3adant2 | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqeq1d | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. ( M x. K ) ) = ( N x. K ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC )  | 
						
						
							| 21 | 
							
								
							 | 
							mulcan2 | 
							 |-  ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl3an1 | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							bitr3d | 
							 |-  ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 24 | 
							
								11 12 14 23
							 | 
							syl3an | 
							 |-  ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							3expb | 
							 |-  ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3impa | 
							 |-  ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3coml | 
							 |-  ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3expia | 
							 |-  ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							3impb | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							imp | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimpd | 
							 |-  ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) -> ( x x. M ) = N ) )  | 
						
						
							| 32 | 
							
								6 7 8 31
							 | 
							dvds1lem | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) -> M || N ) )  | 
						
						
							| 33 | 
							
								
							 | 
							dvdsmulc | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3r | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							impbid | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) <-> M || N ) )  |