| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> C e. ZZ ) |
| 2 |
|
dvdszrcl |
|- ( A || ( B x. C ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
| 3 |
2
|
adantl |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
| 4 |
3
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A e. ZZ ) |
| 5 |
|
bezout |
|- ( ( C e. ZZ /\ A e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
| 6 |
1 4 5
|
syl2anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
| 7 |
4
|
adantr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. ZZ ) |
| 8 |
|
simplll |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. ZZ ) |
| 9 |
|
simpllr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. ZZ ) |
| 10 |
|
simprl |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
| 11 |
9 10
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. ZZ ) |
| 12 |
8 11
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( C x. x ) ) e. ZZ ) |
| 13 |
|
simprr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
| 14 |
7 13
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. ZZ ) |
| 15 |
8 14
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) e. ZZ ) |
| 16 |
8 9
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. C ) e. ZZ ) |
| 17 |
|
simplr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. C ) ) |
| 18 |
7 16 10 17
|
dvdsmultr1d |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. C ) x. x ) ) |
| 19 |
8
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. CC ) |
| 20 |
9
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. CC ) |
| 21 |
10
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
| 22 |
19 20 21
|
mulassd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( B x. C ) x. x ) = ( B x. ( C x. x ) ) ) |
| 23 |
18 22
|
breqtrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( C x. x ) ) ) |
| 24 |
8 13
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. y ) e. ZZ ) |
| 25 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ ( B x. y ) e. ZZ ) -> A || ( A x. ( B x. y ) ) ) |
| 26 |
7 24 25
|
syl2anc |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( A x. ( B x. y ) ) ) |
| 27 |
7
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. CC ) |
| 28 |
13
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. CC ) |
| 29 |
19 27 28
|
mul12d |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) = ( A x. ( B x. y ) ) ) |
| 30 |
26 29
|
breqtrrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( A x. y ) ) ) |
| 31 |
7 12 15 23 30
|
dvds2addd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
| 32 |
11
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. CC ) |
| 33 |
14
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. CC ) |
| 34 |
19 32 33
|
adddid |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( ( C x. x ) + ( A x. y ) ) ) = ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
| 35 |
31 34
|
breqtrrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
| 36 |
|
oveq2 |
|- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( B x. ( C gcd A ) ) = ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
| 37 |
36
|
breq2d |
|- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( A || ( B x. ( C gcd A ) ) <-> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) ) |
| 38 |
35 37
|
syl5ibrcom |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
| 39 |
38
|
rexlimdvva |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
| 40 |
6 39
|
mpd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A || ( B x. ( C gcd A ) ) ) |
| 41 |
|
dvdszrcl |
|- ( A || ( B x. ( C gcd A ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
| 42 |
41
|
adantl |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
| 43 |
42
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A e. ZZ ) |
| 44 |
42
|
simprd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) e. ZZ ) |
| 45 |
|
zmulcl |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 46 |
45
|
adantr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. C ) e. ZZ ) |
| 47 |
|
simpr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. ( C gcd A ) ) ) |
| 48 |
|
simplr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> C e. ZZ ) |
| 49 |
|
gcddvds |
|- ( ( C e. ZZ /\ A e. ZZ ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
| 50 |
48 43 49
|
syl2anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
| 51 |
50
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) || C ) |
| 52 |
48 43
|
gcdcld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. NN0 ) |
| 53 |
52
|
nn0zd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. ZZ ) |
| 54 |
|
simpll |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> B e. ZZ ) |
| 55 |
|
dvdscmul |
|- ( ( ( C gcd A ) e. ZZ /\ C e. ZZ /\ B e. ZZ ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
| 56 |
53 48 54 55
|
syl3anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
| 57 |
51 56
|
mpd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) || ( B x. C ) ) |
| 58 |
43 44 46 47 57
|
dvdstrd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. C ) ) |
| 59 |
40 58
|
impbida |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( A || ( B x. C ) <-> A || ( B x. ( C gcd A ) ) ) ) |