Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> C e. ZZ ) |
2 |
|
dvdszrcl |
|- ( A || ( B x. C ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
3 |
2
|
adantl |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( A e. ZZ /\ ( B x. C ) e. ZZ ) ) |
4 |
3
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A e. ZZ ) |
5 |
|
bezout |
|- ( ( C e. ZZ /\ A e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) ) |
7 |
4
|
adantr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. ZZ ) |
8 |
|
simplll |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. ZZ ) |
9 |
|
simpllr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. ZZ ) |
10 |
|
simprl |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
11 |
9 10
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. ZZ ) |
12 |
8 11
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( C x. x ) ) e. ZZ ) |
13 |
|
simprr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
14 |
7 13
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. ZZ ) |
15 |
8 14
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) e. ZZ ) |
16 |
8 9
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. C ) e. ZZ ) |
17 |
|
simplr |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. C ) ) |
18 |
7 16 10 17
|
dvdsmultr1d |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. C ) x. x ) ) |
19 |
8
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> B e. CC ) |
20 |
9
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> C e. CC ) |
21 |
10
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
22 |
19 20 21
|
mulassd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( B x. C ) x. x ) = ( B x. ( C x. x ) ) ) |
23 |
18 22
|
breqtrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( C x. x ) ) ) |
24 |
8 13
|
zmulcld |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. y ) e. ZZ ) |
25 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ ( B x. y ) e. ZZ ) -> A || ( A x. ( B x. y ) ) ) |
26 |
7 24 25
|
syl2anc |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( A x. ( B x. y ) ) ) |
27 |
7
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. CC ) |
28 |
13
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. CC ) |
29 |
19 27 28
|
mul12d |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( A x. y ) ) = ( A x. ( B x. y ) ) ) |
30 |
26 29
|
breqtrrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( A x. y ) ) ) |
31 |
7 12 15 23 30
|
dvds2addd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
32 |
11
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( C x. x ) e. CC ) |
33 |
14
|
zcnd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( A x. y ) e. CC ) |
34 |
19 32 33
|
adddid |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( B x. ( ( C x. x ) + ( A x. y ) ) ) = ( ( B x. ( C x. x ) ) + ( B x. ( A x. y ) ) ) ) |
35 |
31 34
|
breqtrrd |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
36 |
|
oveq2 |
|- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( B x. ( C gcd A ) ) = ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) |
37 |
36
|
breq2d |
|- ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> ( A || ( B x. ( C gcd A ) ) <-> A || ( B x. ( ( C x. x ) + ( A x. y ) ) ) ) ) |
38 |
35 37
|
syl5ibrcom |
|- ( ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
39 |
38
|
rexlimdvva |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> ( E. x e. ZZ E. y e. ZZ ( C gcd A ) = ( ( C x. x ) + ( A x. y ) ) -> A || ( B x. ( C gcd A ) ) ) ) |
40 |
6 39
|
mpd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. C ) ) -> A || ( B x. ( C gcd A ) ) ) |
41 |
|
dvdszrcl |
|- ( A || ( B x. ( C gcd A ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
42 |
41
|
adantl |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( A e. ZZ /\ ( B x. ( C gcd A ) ) e. ZZ ) ) |
43 |
42
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A e. ZZ ) |
44 |
42
|
simprd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) e. ZZ ) |
45 |
|
zmulcl |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
46 |
45
|
adantr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. C ) e. ZZ ) |
47 |
|
simpr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. ( C gcd A ) ) ) |
48 |
|
simplr |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> C e. ZZ ) |
49 |
|
gcddvds |
|- ( ( C e. ZZ /\ A e. ZZ ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
50 |
48 43 49
|
syl2anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C /\ ( C gcd A ) || A ) ) |
51 |
50
|
simpld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) || C ) |
52 |
48 43
|
gcdcld |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. NN0 ) |
53 |
52
|
nn0zd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( C gcd A ) e. ZZ ) |
54 |
|
simpll |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> B e. ZZ ) |
55 |
|
dvdscmul |
|- ( ( ( C gcd A ) e. ZZ /\ C e. ZZ /\ B e. ZZ ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
56 |
53 48 54 55
|
syl3anc |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( ( C gcd A ) || C -> ( B x. ( C gcd A ) ) || ( B x. C ) ) ) |
57 |
51 56
|
mpd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> ( B x. ( C gcd A ) ) || ( B x. C ) ) |
58 |
43 44 46 47 57
|
dvdstrd |
|- ( ( ( B e. ZZ /\ C e. ZZ ) /\ A || ( B x. ( C gcd A ) ) ) -> A || ( B x. C ) ) |
59 |
40 58
|
impbida |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( A || ( B x. C ) <-> A || ( B x. ( C gcd A ) ) ) ) |