| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dvdsmul1 | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant1 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) )  | 
						
						
							| 3 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant1 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ )  | 
						
						
							| 5 | 
							
								
							 | 
							dvdstr | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syld3an3 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							mpan2d | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) )  |