Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsmul1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
2 |
1
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
3 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
4 |
3
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
5 |
|
dvdstr |
|- ( ( K e. ZZ /\ M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) ) |
6 |
4 5
|
syld3an3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || ( M x. N ) ) -> K || ( M x. N ) ) ) |
7 |
2 6
|
mpan2d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) ) |