Metamath Proof Explorer


Theorem dvdsmultr1d

Description: Deduction form of dvdsmultr1 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses dvdsmultr1d.1
|- ( ph -> K e. ZZ )
dvdsmultr1d.2
|- ( ph -> M e. ZZ )
dvdsmultr1d.3
|- ( ph -> N e. ZZ )
dvdsmultr1d.4
|- ( ph -> K || M )
Assertion dvdsmultr1d
|- ( ph -> K || ( M x. N ) )

Proof

Step Hyp Ref Expression
1 dvdsmultr1d.1
 |-  ( ph -> K e. ZZ )
2 dvdsmultr1d.2
 |-  ( ph -> M e. ZZ )
3 dvdsmultr1d.3
 |-  ( ph -> N e. ZZ )
4 dvdsmultr1d.4
 |-  ( ph -> K || M )
5 dvdsmultr1
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) )
6 1 2 3 5 syl3anc
 |-  ( ph -> ( K || M -> K || ( M x. N ) ) )
7 4 6 mpd
 |-  ( ph -> K || ( M x. N ) )