Description: Deduction form of dvdsmultr1 . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmultr1d.1 | |- ( ph -> K e. ZZ )  | 
					|
| dvdsmultr1d.2 | |- ( ph -> M e. ZZ )  | 
					||
| dvdsmultr1d.3 | |- ( ph -> N e. ZZ )  | 
					||
| dvdsmultr1d.4 | |- ( ph -> K || M )  | 
					||
| Assertion | dvdsmultr1d | |- ( ph -> K || ( M x. N ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvdsmultr1d.1 | |- ( ph -> K e. ZZ )  | 
						|
| 2 | dvdsmultr1d.2 | |- ( ph -> M e. ZZ )  | 
						|
| 3 | dvdsmultr1d.3 | |- ( ph -> N e. ZZ )  | 
						|
| 4 | dvdsmultr1d.4 | |- ( ph -> K || M )  | 
						|
| 5 | dvdsmultr1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) )  | 
						|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( K || M -> K || ( M x. N ) ) )  | 
						
| 7 | 4 6 | mpd | |- ( ph -> K || ( M x. N ) )  |