| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dvdsmul2 | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biantrud | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant1 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ )  | 
						
						
							| 5 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ )  | 
						
						
							| 6 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant1 | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ )  | 
						
						
							| 8 | 
							
								
							 | 
							dvdstr | 
							 |-  ( ( K e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) )  | 
						
						
							| 9 | 
							
								4 5 7 8
							 | 
							syl3anc | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							sylbid | 
							 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) )  |