Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
2 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
3 |
2
|
anim2i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ -u N e. ZZ ) ) |
4 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
5 |
4
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> -u x e. ZZ ) |
6 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
8 |
|
mulneg1 |
|- ( ( x e. CC /\ M e. CC ) -> ( -u x x. M ) = -u ( x x. M ) ) |
9 |
|
negeq |
|- ( ( x x. M ) = N -> -u ( x x. M ) = -u N ) |
10 |
9
|
eqeq2d |
|- ( ( x x. M ) = N -> ( ( -u x x. M ) = -u ( x x. M ) <-> ( -u x x. M ) = -u N ) ) |
11 |
8 10
|
syl5ibcom |
|- ( ( x e. CC /\ M e. CC ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
12 |
6 7 11
|
syl2anr |
|- ( ( M e. ZZ /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
13 |
12
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. M ) = -u N ) ) |
14 |
1 3 5 13
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> M || -u N ) ) |
15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
16 |
|
negeq |
|- ( ( x x. M ) = -u N -> -u ( x x. M ) = -u -u N ) |
17 |
|
negneg |
|- ( N e. CC -> -u -u N = N ) |
18 |
16 17
|
sylan9eqr |
|- ( ( N e. CC /\ ( x x. M ) = -u N ) -> -u ( x x. M ) = N ) |
19 |
8 18
|
sylan9eq |
|- ( ( ( x e. CC /\ M e. CC ) /\ ( N e. CC /\ ( x x. M ) = -u N ) ) -> ( -u x x. M ) = N ) |
20 |
19
|
expr |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
21 |
20
|
3impa |
|- ( ( x e. CC /\ M e. CC /\ N e. CC ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
22 |
6 7 15 21
|
syl3an |
|- ( ( x e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
23 |
22
|
3coml |
|- ( ( M e. ZZ /\ N e. ZZ /\ x e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
24 |
23
|
3expa |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = -u N -> ( -u x x. M ) = N ) ) |
25 |
3 1 5 24
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || -u N -> M || N ) ) |
26 |
14 25
|
impbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || -u N ) ) |