Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsnprmd.g |
|- ( ph -> 1 < A ) |
2 |
|
dvdsnprmd.l |
|- ( ph -> A < N ) |
3 |
|
dvdsnprmd.d |
|- ( ph -> A || N ) |
4 |
|
dvdszrcl |
|- ( A || N -> ( A e. ZZ /\ N e. ZZ ) ) |
5 |
|
divides |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
6 |
3 4 5
|
3syl |
|- ( ph -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
7 |
|
2z |
|- 2 e. ZZ |
8 |
7
|
a1i |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 e. ZZ ) |
9 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ZZ ) |
10 |
2
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> A < N ) |
11 |
10
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < N ) |
12 |
|
breq2 |
|- ( ( k x. A ) = N -> ( A < ( k x. A ) <-> A < N ) ) |
13 |
12
|
adantl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A < ( k x. A ) <-> A < N ) ) |
14 |
11 13
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < ( k x. A ) ) |
15 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
16 |
15
|
3ad2ant1 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> A e. RR ) |
17 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
18 |
17
|
3ad2ant3 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> k e. RR ) |
19 |
|
0lt1 |
|- 0 < 1 |
20 |
|
0red |
|- ( A e. ZZ -> 0 e. RR ) |
21 |
|
1red |
|- ( A e. ZZ -> 1 e. RR ) |
22 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
23 |
20 21 15 22
|
syl3anc |
|- ( A e. ZZ -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
24 |
19 23
|
mpani |
|- ( A e. ZZ -> ( 1 < A -> 0 < A ) ) |
25 |
24
|
imp |
|- ( ( A e. ZZ /\ 1 < A ) -> 0 < A ) |
26 |
25
|
3adant3 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> 0 < A ) |
27 |
16 18 26
|
3jca |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
28 |
27
|
3exp |
|- ( A e. ZZ -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
29 |
28
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
30 |
3 4 29
|
3syl |
|- ( ph -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
31 |
1 30
|
mpd |
|- ( ph -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) |
32 |
31
|
imp |
|- ( ( ph /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
34 |
|
ltmulgt12 |
|- ( ( A e. RR /\ k e. RR /\ 0 < A ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
35 |
33 34
|
syl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
36 |
14 35
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 1 < k ) |
37 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
38 |
37
|
breq1i |
|- ( 2 <_ k <-> ( 1 + 1 ) <_ k ) |
39 |
|
1zzd |
|- ( k e. ZZ -> 1 e. ZZ ) |
40 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ k e. ZZ ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
41 |
39 40
|
mpancom |
|- ( k e. ZZ -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
42 |
41
|
bicomd |
|- ( k e. ZZ -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
45 |
38 44
|
syl5bb |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 2 <_ k <-> 1 < k ) ) |
46 |
36 45
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 <_ k ) |
47 |
|
eluz2 |
|- ( k e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ k e. ZZ /\ 2 <_ k ) ) |
48 |
8 9 46 47
|
syl3anbrc |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ( ZZ>= ` 2 ) ) |
49 |
7
|
a1i |
|- ( ( A e. ZZ /\ 1 < A ) -> 2 e. ZZ ) |
50 |
|
simpl |
|- ( ( A e. ZZ /\ 1 < A ) -> A e. ZZ ) |
51 |
|
1zzd |
|- ( A e. ZZ -> 1 e. ZZ ) |
52 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
53 |
51 52
|
mpancom |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
54 |
53
|
biimpa |
|- ( ( A e. ZZ /\ 1 < A ) -> ( 1 + 1 ) <_ A ) |
55 |
37
|
breq1i |
|- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
56 |
54 55
|
sylibr |
|- ( ( A e. ZZ /\ 1 < A ) -> 2 <_ A ) |
57 |
49 50 56
|
3jca |
|- ( ( A e. ZZ /\ 1 < A ) -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
58 |
57
|
ex |
|- ( A e. ZZ -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
59 |
58
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
60 |
3 4 59
|
3syl |
|- ( ph -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
61 |
1 60
|
mpd |
|- ( ph -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
62 |
|
eluz2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
63 |
61 62
|
sylibr |
|- ( ph -> A e. ( ZZ>= ` 2 ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A e. ( ZZ>= ` 2 ) ) |
66 |
|
nprm |
|- ( ( k e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( k x. A ) e. Prime ) |
67 |
48 65 66
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. ( k x. A ) e. Prime ) |
68 |
|
eleq1 |
|- ( ( k x. A ) = N -> ( ( k x. A ) e. Prime <-> N e. Prime ) ) |
69 |
68
|
notbid |
|- ( ( k x. A ) = N -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
70 |
69
|
adantl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
71 |
67 70
|
mpbid |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. N e. Prime ) |
72 |
71
|
rexlimdva2 |
|- ( ph -> ( E. k e. ZZ ( k x. A ) = N -> -. N e. Prime ) ) |
73 |
6 72
|
sylbid |
|- ( ph -> ( A || N -> -. N e. Prime ) ) |
74 |
3 73
|
mpd |
|- ( ph -> -. N e. Prime ) |