| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isprm2 | 
							 |-  ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breq1 | 
							 |-  ( m = M -> ( m || P <-> M || P ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( m = M -> ( m = 1 <-> M = 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( m = M -> ( m = P <-> M = P ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							orbi12d | 
							 |-  ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = 1 \/ M = P ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							orcom | 
							 |-  ( ( M = 1 \/ M = P ) <-> ( M = P \/ M = 1 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitrdi | 
							 |-  ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = P \/ M = 1 ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							imbi12d | 
							 |-  ( m = M -> ( ( m || P -> ( m = 1 \/ m = P ) ) <-> ( M || P -> ( M = P \/ M = 1 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspccva | 
							 |-  ( ( A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantll | 
							 |-  ( ( ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							sylanb | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							prmz | 
							 |-  ( P e. Prime -> P e. ZZ )  | 
						
						
							| 13 | 
							
								
							 | 
							iddvds | 
							 |-  ( P e. ZZ -> P || P )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( P e. Prime -> P || P )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> P || P )  | 
						
						
							| 16 | 
							
								
							 | 
							breq1 | 
							 |-  ( M = P -> ( M || P <-> P || P ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl5ibrcom | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> ( M = P -> M || P ) )  | 
						
						
							| 18 | 
							
								
							 | 
							1dvds | 
							 |-  ( P e. ZZ -> 1 || P )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							syl | 
							 |-  ( P e. Prime -> 1 || P )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> 1 || P )  | 
						
						
							| 21 | 
							
								
							 | 
							breq1 | 
							 |-  ( M = 1 -> ( M || P <-> 1 || P ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl5ibrcom | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> ( M = 1 -> M || P ) )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							jaod | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> ( ( M = P \/ M = 1 ) -> M || P ) )  | 
						
						
							| 24 | 
							
								11 23
							 | 
							impbid | 
							 |-  ( ( P e. Prime /\ M e. NN ) -> ( M || P <-> ( M = P \/ M = 1 ) ) )  |