Step |
Hyp |
Ref |
Expression |
1 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) ) |
2 |
|
breq1 |
|- ( m = M -> ( m || P <-> M || P ) ) |
3 |
|
eqeq1 |
|- ( m = M -> ( m = 1 <-> M = 1 ) ) |
4 |
|
eqeq1 |
|- ( m = M -> ( m = P <-> M = P ) ) |
5 |
3 4
|
orbi12d |
|- ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = 1 \/ M = P ) ) ) |
6 |
|
orcom |
|- ( ( M = 1 \/ M = P ) <-> ( M = P \/ M = 1 ) ) |
7 |
5 6
|
bitrdi |
|- ( m = M -> ( ( m = 1 \/ m = P ) <-> ( M = P \/ M = 1 ) ) ) |
8 |
2 7
|
imbi12d |
|- ( m = M -> ( ( m || P -> ( m = 1 \/ m = P ) ) <-> ( M || P -> ( M = P \/ M = 1 ) ) ) ) |
9 |
8
|
rspccva |
|- ( ( A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
10 |
9
|
adantll |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ A. m e. NN ( m || P -> ( m = 1 \/ m = P ) ) ) /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
11 |
1 10
|
sylanb |
|- ( ( P e. Prime /\ M e. NN ) -> ( M || P -> ( M = P \/ M = 1 ) ) ) |
12 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
13 |
|
iddvds |
|- ( P e. ZZ -> P || P ) |
14 |
12 13
|
syl |
|- ( P e. Prime -> P || P ) |
15 |
14
|
adantr |
|- ( ( P e. Prime /\ M e. NN ) -> P || P ) |
16 |
|
breq1 |
|- ( M = P -> ( M || P <-> P || P ) ) |
17 |
15 16
|
syl5ibrcom |
|- ( ( P e. Prime /\ M e. NN ) -> ( M = P -> M || P ) ) |
18 |
|
1dvds |
|- ( P e. ZZ -> 1 || P ) |
19 |
12 18
|
syl |
|- ( P e. Prime -> 1 || P ) |
20 |
19
|
adantr |
|- ( ( P e. Prime /\ M e. NN ) -> 1 || P ) |
21 |
|
breq1 |
|- ( M = 1 -> ( M || P <-> 1 || P ) ) |
22 |
20 21
|
syl5ibrcom |
|- ( ( P e. Prime /\ M e. NN ) -> ( M = 1 -> M || P ) ) |
23 |
17 22
|
jaod |
|- ( ( P e. Prime /\ M e. NN ) -> ( ( M = P \/ M = 1 ) -> M || P ) ) |
24 |
11 23
|
impbid |
|- ( ( P e. Prime /\ M e. NN ) -> ( M || P <-> ( M = P \/ M = 1 ) ) ) |