Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( z = N -> ( z || P <-> N || P ) ) |
2 |
|
eqeq1 |
|- ( z = N -> ( z = P <-> N = P ) ) |
3 |
1 2
|
imbi12d |
|- ( z = N -> ( ( z || P -> z = P ) <-> ( N || P -> N = P ) ) ) |
4 |
3
|
rspcv |
|- ( N e. ( ZZ>= ` 2 ) -> ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) -> ( N || P -> N = P ) ) ) |
5 |
|
isprm4 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |
6 |
5
|
simprbi |
|- ( P e. Prime -> A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) |
7 |
4 6
|
impel |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N || P -> N = P ) ) |
8 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
9 |
|
iddvds |
|- ( N e. ZZ -> N || N ) |
10 |
|
breq2 |
|- ( N = P -> ( N || N <-> N || P ) ) |
11 |
9 10
|
syl5ibcom |
|- ( N e. ZZ -> ( N = P -> N || P ) ) |
12 |
8 11
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N = P -> N || P ) ) |
13 |
12
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N = P -> N || P ) ) |
14 |
7 13
|
impbid |
|- ( ( N e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( N || P <-> N = P ) ) |