Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. Prime ) |
2 |
|
simp2 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> A e. NN ) |
3 |
1 2
|
pccld |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P pCnt A ) e. NN0 ) |
4 |
3
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( P pCnt A ) e. NN0 ) |
5 |
|
oveq2 |
|- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
6 |
5
|
eqeq2d |
|- ( n = ( P pCnt A ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
7 |
6
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = ( P pCnt A ) ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
8 |
|
simpl3 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. NN0 ) |
9 |
|
oveq2 |
|- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
10 |
9
|
breq2d |
|- ( n = N -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
11 |
10
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = N ) -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
12 |
|
simpr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A || ( P ^ N ) ) |
13 |
8 11 12
|
rspcedvd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A || ( P ^ n ) ) |
14 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
15 |
14
|
3adant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
16 |
15
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
17 |
13 16
|
mpbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
18 |
4 7 17
|
rspcedvd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
19 |
18
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |