| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. Prime ) | 
						
							| 2 |  | simp2 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> A e. NN ) | 
						
							| 3 | 1 2 | pccld |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P pCnt A ) e. NN0 ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( P pCnt A ) e. NN0 ) | 
						
							| 5 |  | oveq2 |  |-  ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( n = ( P pCnt A ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = ( P pCnt A ) ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 8 |  | simpl3 |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. NN0 ) | 
						
							| 9 |  | oveq2 |  |-  ( n = N -> ( P ^ n ) = ( P ^ N ) ) | 
						
							| 10 | 9 | breq2d |  |-  ( n = N -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = N ) -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A || ( P ^ N ) ) | 
						
							| 13 | 8 11 12 | rspcedvd |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A || ( P ^ n ) ) | 
						
							| 14 |  | pcprmpw2 |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 17 | 13 16 | mpbid |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A = ( P ^ ( P pCnt A ) ) ) | 
						
							| 18 | 4 7 17 | rspcedvd |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) | 
						
							| 19 | 18 | ex |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |