| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsprmpweq |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) | 
						
							| 2 | 1 | imp |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) | 
						
							| 3 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. RR ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. RR ) | 
						
							| 6 |  | nn0re |  |-  ( n e. NN0 -> n e. RR ) | 
						
							| 7 | 5 6 | anim12ci |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( n e. RR /\ N e. RR ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n e. RR /\ N e. RR ) ) | 
						
							| 9 |  | lelttric |  |-  ( ( n e. RR /\ N e. RR ) -> ( n <_ N \/ N < n ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N \/ N < n ) ) | 
						
							| 11 |  | breq1 |  |-  ( A = ( P ^ n ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) | 
						
							| 13 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 14 | 13 | nnnn0d |  |-  ( P e. Prime -> P e. NN0 ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. NN0 ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. NN0 ) | 
						
							| 17 |  | simpr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 18 | 16 17 | nn0expcld |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. NN0 ) | 
						
							| 19 | 18 | nn0zd |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) | 
						
							| 20 | 13 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. CC ) | 
						
							| 23 | 13 | nnne0d |  |-  ( P e. Prime -> P =/= 0 ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P =/= 0 ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P =/= 0 ) | 
						
							| 26 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. ZZ ) | 
						
							| 28 | 22 25 27 | expne0d |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) =/= 0 ) | 
						
							| 29 |  | simp3 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. NN0 ) | 
						
							| 31 | 16 30 | nn0expcld |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. NN0 ) | 
						
							| 32 | 31 | nn0zd |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. ZZ ) | 
						
							| 33 |  | dvdsval2 |  |-  ( ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 /\ ( P ^ N ) e. ZZ ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) | 
						
							| 34 | 19 28 32 33 | syl3anc |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) | 
						
							| 35 | 20 23 | jca |  |-  ( P e. Prime -> ( P e. CC /\ P =/= 0 ) ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P e. CC /\ P =/= 0 ) ) | 
						
							| 37 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 38 | 37 | 3ad2ant3 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. ZZ ) | 
						
							| 39 | 38 26 | anim12i |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. ZZ /\ n e. ZZ ) ) | 
						
							| 40 |  | expsub |  |-  ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( P ^ ( N - n ) ) = ( ( P ^ N ) / ( P ^ n ) ) ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) | 
						
							| 42 | 36 39 41 | syl2an2r |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) | 
						
							| 43 | 42 | eleq1d |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ <-> ( P ^ ( N - n ) ) e. ZZ ) ) | 
						
							| 44 | 22 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. CC ) | 
						
							| 45 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 46 | 45 | 3ad2ant3 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. CC ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. CC ) | 
						
							| 48 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. CC ) | 
						
							| 50 | 47 49 | subcld |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N - n ) e. CC ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N - n ) e. CC ) | 
						
							| 52 | 46 48 | anim12i |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. CC /\ n e. CC ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N e. CC /\ n e. CC ) ) | 
						
							| 54 |  | negsubdi2 |  |-  ( ( N e. CC /\ n e. CC ) -> -u ( N - n ) = ( n - N ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) = ( n - N ) ) | 
						
							| 56 | 29 | anim1ci |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( n e. NN0 /\ N e. NN0 ) ) | 
						
							| 57 |  | ltsubnn0 |  |-  ( ( n e. NN0 /\ N e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN0 ) | 
						
							| 60 | 55 59 | eqeltrd |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) e. NN0 ) | 
						
							| 61 |  | expneg2 |  |-  ( ( P e. CC /\ ( N - n ) e. CC /\ -u ( N - n ) e. NN0 ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) | 
						
							| 62 | 44 51 60 61 | syl3anc |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) | 
						
							| 63 | 62 | eleq1d |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ <-> ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) ) | 
						
							| 64 | 13 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 65 | 64 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. RR ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. RR ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. RR ) | 
						
							| 68 | 67 59 | reexpcld |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( n - N ) ) e. RR ) | 
						
							| 69 |  | znnsub |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( N < n <-> ( n - N ) e. NN ) ) | 
						
							| 70 | 39 69 | syl |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n <-> ( n - N ) e. NN ) ) | 
						
							| 71 | 70 | biimpa |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN ) | 
						
							| 72 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 73 | 72 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> 1 < P ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> 1 < P ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < P ) | 
						
							| 76 |  | expgt1 |  |-  ( ( P e. RR /\ ( n - N ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( n - N ) ) ) | 
						
							| 77 | 67 71 75 76 | syl3anc |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < ( P ^ ( n - N ) ) ) | 
						
							| 78 | 68 77 | jca |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) | 
						
							| 79 |  | oveq2 |  |-  ( -u ( N - n ) = ( n - N ) -> ( P ^ -u ( N - n ) ) = ( P ^ ( n - N ) ) ) | 
						
							| 80 | 79 | eleq1d |  |-  ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR <-> ( P ^ ( n - N ) ) e. RR ) ) | 
						
							| 81 | 79 | breq2d |  |-  ( -u ( N - n ) = ( n - N ) -> ( 1 < ( P ^ -u ( N - n ) ) <-> 1 < ( P ^ ( n - N ) ) ) ) | 
						
							| 82 | 80 81 | anbi12d |  |-  ( -u ( N - n ) = ( n - N ) -> ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) <-> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) ) | 
						
							| 83 | 78 82 | syl5ibrcom |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) ) | 
						
							| 84 | 55 83 | mpd |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) | 
						
							| 85 |  | recnz |  |-  ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) | 
						
							| 86 | 84 85 | syl |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) | 
						
							| 87 | 86 | pm2.21d |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ -> n <_ N ) ) | 
						
							| 88 | 63 87 | sylbid |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) | 
						
							| 89 | 88 | ex |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) ) | 
						
							| 90 | 89 | com23 |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ ( N - n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) | 
						
							| 91 | 43 90 | sylbid |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) | 
						
							| 92 | 34 91 | sylbid |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) | 
						
							| 94 | 12 93 | sylbid |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) | 
						
							| 95 | 94 | ex |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) ) | 
						
							| 96 | 95 | com23 |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) | 
						
							| 97 | 96 | ex |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( n e. NN0 -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) | 
						
							| 98 | 97 | com23 |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> ( n e. NN0 -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) | 
						
							| 99 | 98 | imp41 |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( N < n -> n <_ N ) ) | 
						
							| 100 | 99 | com12 |  |-  ( N < n -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) | 
						
							| 101 | 100 | jao1i |  |-  ( ( n <_ N \/ N < n ) -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) | 
						
							| 102 | 10 101 | mpcom |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) | 
						
							| 103 |  | simpr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> A = ( P ^ n ) ) | 
						
							| 104 | 102 103 | jca |  |-  ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N /\ A = ( P ^ n ) ) ) | 
						
							| 105 | 104 | ex |  |-  ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( n <_ N /\ A = ( P ^ n ) ) ) ) | 
						
							| 106 | 105 | reximdva |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) | 
						
							| 107 | 2 106 | mpd |  |-  ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) | 
						
							| 108 | 107 | ex |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |