Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsprmpweq |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
2 |
1
|
imp |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
4 |
3
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. RR ) |
5 |
4
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. RR ) |
6 |
|
nn0re |
|- ( n e. NN0 -> n e. RR ) |
7 |
5 6
|
anim12ci |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( n e. RR /\ N e. RR ) ) |
8 |
7
|
adantr |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n e. RR /\ N e. RR ) ) |
9 |
|
lelttric |
|- ( ( n e. RR /\ N e. RR ) -> ( n <_ N \/ N < n ) ) |
10 |
8 9
|
syl |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N \/ N < n ) ) |
11 |
|
breq1 |
|- ( A = ( P ^ n ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
12 |
11
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
13 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
14 |
13
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
15 |
14
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. NN0 ) |
16 |
15
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. NN0 ) |
17 |
|
simpr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. NN0 ) |
18 |
16 17
|
nn0expcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. NN0 ) |
19 |
18
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
20 |
13
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
21 |
20
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. CC ) |
22 |
21
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. CC ) |
23 |
13
|
nnne0d |
|- ( P e. Prime -> P =/= 0 ) |
24 |
23
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P =/= 0 ) |
25 |
24
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P =/= 0 ) |
26 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
27 |
26
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. ZZ ) |
28 |
22 25 27
|
expne0d |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) =/= 0 ) |
29 |
|
simp3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. NN0 ) |
30 |
29
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. NN0 ) |
31 |
16 30
|
nn0expcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. NN0 ) |
32 |
31
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. ZZ ) |
33 |
|
dvdsval2 |
|- ( ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 /\ ( P ^ N ) e. ZZ ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
34 |
19 28 32 33
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
35 |
20 23
|
jca |
|- ( P e. Prime -> ( P e. CC /\ P =/= 0 ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P e. CC /\ P =/= 0 ) ) |
37 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
38 |
37
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. ZZ ) |
39 |
38 26
|
anim12i |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. ZZ /\ n e. ZZ ) ) |
40 |
|
expsub |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( P ^ ( N - n ) ) = ( ( P ^ N ) / ( P ^ n ) ) ) |
41 |
40
|
eqcomd |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
42 |
36 39 41
|
syl2an2r |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
43 |
42
|
eleq1d |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ <-> ( P ^ ( N - n ) ) e. ZZ ) ) |
44 |
22
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. CC ) |
45 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
46 |
45
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. CC ) |
47 |
46
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. CC ) |
48 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
49 |
48
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. CC ) |
50 |
47 49
|
subcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N - n ) e. CC ) |
51 |
50
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N - n ) e. CC ) |
52 |
46 48
|
anim12i |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. CC /\ n e. CC ) ) |
53 |
52
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N e. CC /\ n e. CC ) ) |
54 |
|
negsubdi2 |
|- ( ( N e. CC /\ n e. CC ) -> -u ( N - n ) = ( n - N ) ) |
55 |
53 54
|
syl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) = ( n - N ) ) |
56 |
29
|
anim1ci |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( n e. NN0 /\ N e. NN0 ) ) |
57 |
|
ltsubnn0 |
|- ( ( n e. NN0 /\ N e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
58 |
56 57
|
syl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
59 |
58
|
imp |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN0 ) |
60 |
55 59
|
eqeltrd |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) e. NN0 ) |
61 |
|
expneg2 |
|- ( ( P e. CC /\ ( N - n ) e. CC /\ -u ( N - n ) e. NN0 ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
62 |
44 51 60 61
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
63 |
62
|
eleq1d |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ <-> ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) ) |
64 |
13
|
nnred |
|- ( P e. Prime -> P e. RR ) |
65 |
64
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. RR ) |
66 |
65
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. RR ) |
67 |
66
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. RR ) |
68 |
67 59
|
reexpcld |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( n - N ) ) e. RR ) |
69 |
|
znnsub |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( N < n <-> ( n - N ) e. NN ) ) |
70 |
39 69
|
syl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n <-> ( n - N ) e. NN ) ) |
71 |
70
|
biimpa |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN ) |
72 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
73 |
72
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> 1 < P ) |
74 |
73
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> 1 < P ) |
75 |
74
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < P ) |
76 |
|
expgt1 |
|- ( ( P e. RR /\ ( n - N ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( n - N ) ) ) |
77 |
67 71 75 76
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < ( P ^ ( n - N ) ) ) |
78 |
68 77
|
jca |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) |
79 |
|
oveq2 |
|- ( -u ( N - n ) = ( n - N ) -> ( P ^ -u ( N - n ) ) = ( P ^ ( n - N ) ) ) |
80 |
79
|
eleq1d |
|- ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR <-> ( P ^ ( n - N ) ) e. RR ) ) |
81 |
79
|
breq2d |
|- ( -u ( N - n ) = ( n - N ) -> ( 1 < ( P ^ -u ( N - n ) ) <-> 1 < ( P ^ ( n - N ) ) ) ) |
82 |
80 81
|
anbi12d |
|- ( -u ( N - n ) = ( n - N ) -> ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) <-> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) ) |
83 |
78 82
|
syl5ibrcom |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) ) |
84 |
55 83
|
mpd |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) |
85 |
|
recnz |
|- ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
86 |
84 85
|
syl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
87 |
86
|
pm2.21d |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ -> n <_ N ) ) |
88 |
63 87
|
sylbid |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) |
89 |
88
|
ex |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) ) |
90 |
89
|
com23 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ ( N - n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
91 |
43 90
|
sylbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
92 |
34 91
|
sylbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
93 |
92
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
94 |
12 93
|
sylbid |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
95 |
94
|
ex |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) ) |
96 |
95
|
com23 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) |
97 |
96
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( n e. NN0 -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
98 |
97
|
com23 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> ( n e. NN0 -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
99 |
98
|
imp41 |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( N < n -> n <_ N ) ) |
100 |
99
|
com12 |
|- ( N < n -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
101 |
100
|
jao1i |
|- ( ( n <_ N \/ N < n ) -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
102 |
10 101
|
mpcom |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) |
103 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> A = ( P ^ n ) ) |
104 |
102 103
|
jca |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N /\ A = ( P ^ n ) ) ) |
105 |
104
|
ex |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( n <_ N /\ A = ( P ^ n ) ) ) ) |
106 |
105
|
reximdva |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |
107 |
2 106
|
mpd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) |
108 |
107
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |