| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN ) | 
						
							| 2 |  | dvdsprmpweq |  |-  ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) | 
						
							| 3 | 1 2 | syl3an2 |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) | 
						
							| 5 |  | df-n0 |  |-  NN0 = ( NN u. { 0 } ) | 
						
							| 6 | 5 | rexeqi |  |-  ( E. n e. NN0 A = ( P ^ n ) <-> E. n e. ( NN u. { 0 } ) A = ( P ^ n ) ) | 
						
							| 7 |  | rexun |  |-  ( E. n e. ( NN u. { 0 } ) A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( E. n e. NN0 A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) | 
						
							| 9 |  | 0z |  |-  0 e. ZZ | 
						
							| 10 |  | oveq2 |  |-  ( n = 0 -> ( P ^ n ) = ( P ^ 0 ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( n = 0 -> ( A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) | 
						
							| 12 | 11 | rexsng |  |-  ( 0 e. ZZ -> ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) | 
						
							| 13 | 9 12 | ax-mp |  |-  ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) | 
						
							| 14 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 15 | 14 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 16 | 15 | exp0d |  |-  ( P e. Prime -> ( P ^ 0 ) = 1 ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P ^ 0 ) = 1 ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) <-> A = 1 ) ) | 
						
							| 19 |  | eluz2b3 |  |-  ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ A =/= 1 ) ) | 
						
							| 20 |  | eqneqall |  |-  ( A = 1 -> ( A =/= 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 21 | 20 | com12 |  |-  ( A =/= 1 -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 22 | 19 21 | simplbiim |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant2 |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 24 | 18 23 | sylbid |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 25 | 24 | com12 |  |-  ( A = ( P ^ 0 ) -> ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) | 
						
							| 26 | 25 | impd |  |-  ( A = ( P ^ 0 ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) | 
						
							| 27 | 13 26 | sylbi |  |-  ( E. n e. { 0 } A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) | 
						
							| 28 | 27 | jao1i |  |-  ( ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) | 
						
							| 29 | 8 28 | sylbi |  |-  ( E. n e. NN0 A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) | 
						
							| 30 | 4 29 | mpcom |  |-  ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) |