Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
2 |
|
dvdsprmpweq |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
3 |
1 2
|
syl3an2 |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
4 |
3
|
imp |
|- ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
5 |
|
df-n0 |
|- NN0 = ( NN u. { 0 } ) |
6 |
5
|
rexeqi |
|- ( E. n e. NN0 A = ( P ^ n ) <-> E. n e. ( NN u. { 0 } ) A = ( P ^ n ) ) |
7 |
|
rexun |
|- ( E. n e. ( NN u. { 0 } ) A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) |
8 |
6 7
|
bitri |
|- ( E. n e. NN0 A = ( P ^ n ) <-> ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) ) |
9 |
|
0z |
|- 0 e. ZZ |
10 |
|
oveq2 |
|- ( n = 0 -> ( P ^ n ) = ( P ^ 0 ) ) |
11 |
10
|
eqeq2d |
|- ( n = 0 -> ( A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) |
12 |
11
|
rexsng |
|- ( 0 e. ZZ -> ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) ) |
13 |
9 12
|
ax-mp |
|- ( E. n e. { 0 } A = ( P ^ n ) <-> A = ( P ^ 0 ) ) |
14 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
15 |
14
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
16 |
15
|
exp0d |
|- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
17 |
16
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P ^ 0 ) = 1 ) |
18 |
17
|
eqeq2d |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) <-> A = 1 ) ) |
19 |
|
eluz2b3 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ A =/= 1 ) ) |
20 |
|
eqneqall |
|- ( A = 1 -> ( A =/= 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
21 |
20
|
com12 |
|- ( A =/= 1 -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
22 |
19 21
|
simplbiim |
|- ( A e. ( ZZ>= ` 2 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
23 |
22
|
3ad2ant2 |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = 1 -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
24 |
18 23
|
sylbid |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A = ( P ^ 0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
25 |
24
|
com12 |
|- ( A = ( P ^ 0 ) -> ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) ) |
26 |
25
|
impd |
|- ( A = ( P ^ 0 ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
27 |
13 26
|
sylbi |
|- ( E. n e. { 0 } A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
28 |
27
|
jao1i |
|- ( ( E. n e. NN A = ( P ^ n ) \/ E. n e. { 0 } A = ( P ^ n ) ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
29 |
8 28
|
sylbi |
|- ( E. n e. NN0 A = ( P ^ n ) -> ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) ) |
30 |
4 29
|
mpcom |
|- ( ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN A = ( P ^ n ) ) |
31 |
30
|
ex |
|- ( ( P e. Prime /\ A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN A = ( P ^ n ) ) ) |