Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr0.b |
|- B = ( Base ` R ) |
2 |
|
dvdsr0.d |
|- .|| = ( ||r ` R ) |
3 |
|
dvdsr0.z |
|- .0. = ( 0g ` R ) |
4 |
1 3
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
1 5 3
|
ringlz |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) |
7 |
|
oveq1 |
|- ( x = .0. -> ( x ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) |
8 |
7
|
eqeq1d |
|- ( x = .0. -> ( ( x ( .r ` R ) X ) = .0. <-> ( .0. ( .r ` R ) X ) = .0. ) ) |
9 |
8
|
rspcev |
|- ( ( .0. e. B /\ ( .0. ( .r ` R ) X ) = .0. ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) |
10 |
4 6 9
|
syl2an2r |
|- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) |
11 |
1 2 5
|
dvdsr2 |
|- ( X e. B -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) |
12 |
11
|
adantl |
|- ( ( R e. Ring /\ X e. B ) -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) |
13 |
10 12
|
mpbird |
|- ( ( R e. Ring /\ X e. B ) -> X .|| .0. ) |