| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr0.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dvdsr0.d |  |-  .|| = ( ||r ` R ) | 
						
							| 3 |  | dvdsr0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 3 | ring0cl |  |-  ( R e. Ring -> .0. e. B ) | 
						
							| 5 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 6 | 1 5 3 | ringlz |  |-  ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) | 
						
							| 7 |  | oveq1 |  |-  ( x = .0. -> ( x ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( x = .0. -> ( ( x ( .r ` R ) X ) = .0. <-> ( .0. ( .r ` R ) X ) = .0. ) ) | 
						
							| 9 | 8 | rspcev |  |-  ( ( .0. e. B /\ ( .0. ( .r ` R ) X ) = .0. ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) | 
						
							| 10 | 4 6 9 | syl2an2r |  |-  ( ( R e. Ring /\ X e. B ) -> E. x e. B ( x ( .r ` R ) X ) = .0. ) | 
						
							| 11 | 1 2 5 | dvdsr2 |  |-  ( X e. B -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( R e. Ring /\ X e. B ) -> ( X .|| .0. <-> E. x e. B ( x ( .r ` R ) X ) = .0. ) ) | 
						
							| 13 | 10 12 | mpbird |  |-  ( ( R e. Ring /\ X e. B ) -> X .|| .0. ) |