| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr0.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dvdsr0.d |  |-  .|| = ( ||r ` R ) | 
						
							| 3 |  | dvdsr0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 3 | ring0cl |  |-  ( R e. Ring -> .0. e. B ) | 
						
							| 5 | 4 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> .0. e. B ) | 
						
							| 6 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 7 | 1 2 6 | dvdsr2 |  |-  ( .0. e. B -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) | 
						
							| 9 | 1 6 3 | ringrz |  |-  ( ( R e. Ring /\ x e. B ) -> ( x ( .r ` R ) .0. ) = .0. ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> .0. = X ) ) | 
						
							| 11 |  | eqcom |  |-  ( .0. = X <-> X = .0. ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) | 
						
							| 13 | 12 | rexbidva |  |-  ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> E. x e. B X = .0. ) ) | 
						
							| 14 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 15 | 1 | grpbn0 |  |-  ( R e. Grp -> B =/= (/) ) | 
						
							| 16 |  | r19.9rzv |  |-  ( B =/= (/) -> ( X = .0. <-> E. x e. B X = .0. ) ) | 
						
							| 17 | 14 15 16 | 3syl |  |-  ( R e. Ring -> ( X = .0. <-> E. x e. B X = .0. ) ) | 
						
							| 18 | 13 17 | bitr4d |  |-  ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) | 
						
							| 20 | 8 19 | bitrd |  |-  ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> X = .0. ) ) |