Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
dvdsr.2 | |- .|| = ( ||r ` R ) |
||
dvdsr.3 | |- .x. = ( .r ` R ) |
||
Assertion | dvdsr2 | |- ( X e. B -> ( X .|| Y <-> E. z e. B ( z .x. X ) = Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.1 | |- B = ( Base ` R ) |
|
2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
3 | dvdsr.3 | |- .x. = ( .r ` R ) |
|
4 | 1 2 3 | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) ) |
5 | 4 | baib | |- ( X e. B -> ( X .|| Y <-> E. z e. B ( z .x. X ) = Y ) ) |