Metamath Proof Explorer


Theorem dvdsr2

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1
|- B = ( Base ` R )
dvdsr.2
|- .|| = ( ||r ` R )
dvdsr.3
|- .x. = ( .r ` R )
Assertion dvdsr2
|- ( X e. B -> ( X .|| Y <-> E. z e. B ( z .x. X ) = Y ) )

Proof

Step Hyp Ref Expression
1 dvdsr.1
 |-  B = ( Base ` R )
2 dvdsr.2
 |-  .|| = ( ||r ` R )
3 dvdsr.3
 |-  .x. = ( .r ` R )
4 1 2 3 dvdsr
 |-  ( X .|| Y <-> ( X e. B /\ E. z e. B ( z .x. X ) = Y ) )
5 4 baib
 |-  ( X e. B -> ( X .|| Y <-> E. z e. B ( z .x. X ) = Y ) )