Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| Assertion | dvdsrcl | |- ( X .|| Y -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 4 | 1 2 3 | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. x e. B ( x ( .r ` R ) X ) = Y ) ) |
| 5 | 4 | simplbi | |- ( X .|| Y -> X e. B ) |