Metamath Proof Explorer


Theorem dvdsrmul

Description: A left-multiple of X is divisible by X . (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1
|- B = ( Base ` R )
dvdsr.2
|- .|| = ( ||r ` R )
dvdsr.3
|- .x. = ( .r ` R )
Assertion dvdsrmul
|- ( ( X e. B /\ Y e. B ) -> X .|| ( Y .x. X ) )

Proof

Step Hyp Ref Expression
1 dvdsr.1
 |-  B = ( Base ` R )
2 dvdsr.2
 |-  .|| = ( ||r ` R )
3 dvdsr.3
 |-  .x. = ( .r ` R )
4 simpl
 |-  ( ( X e. B /\ Y e. B ) -> X e. B )
5 simpr
 |-  ( ( X e. B /\ Y e. B ) -> Y e. B )
6 eqid
 |-  ( Y .x. X ) = ( Y .x. X )
7 oveq1
 |-  ( z = Y -> ( z .x. X ) = ( Y .x. X ) )
8 7 eqeq1d
 |-  ( z = Y -> ( ( z .x. X ) = ( Y .x. X ) <-> ( Y .x. X ) = ( Y .x. X ) ) )
9 8 rspcev
 |-  ( ( Y e. B /\ ( Y .x. X ) = ( Y .x. X ) ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) )
10 5 6 9 sylancl
 |-  ( ( X e. B /\ Y e. B ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) )
11 1 2 3 dvdsr
 |-  ( X .|| ( Y .x. X ) <-> ( X e. B /\ E. z e. B ( z .x. X ) = ( Y .x. X ) ) )
12 4 10 11 sylanbrc
 |-  ( ( X e. B /\ Y e. B ) -> X .|| ( Y .x. X ) )