| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr.1 |
|- B = ( Base ` R ) |
| 2 |
|
dvdsr.2 |
|- .|| = ( ||r ` R ) |
| 3 |
|
dvdsrneg.5 |
|- N = ( invg ` R ) |
| 4 |
|
id |
|- ( X e. B -> X e. B ) |
| 5 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 7 |
1 6
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 8 |
1 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 9 |
5 7 8
|
syl2anc |
|- ( R e. Ring -> ( N ` ( 1r ` R ) ) e. B ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
1 2 10
|
dvdsrmul |
|- ( ( X e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
| 12 |
4 9 11
|
syl2anr |
|- ( ( R e. Ring /\ X e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
| 13 |
|
simpl |
|- ( ( R e. Ring /\ X e. B ) -> R e. Ring ) |
| 14 |
|
simpr |
|- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
| 15 |
1 10 6 3 13 14
|
ringnegl |
|- ( ( R e. Ring /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) |
| 16 |
12 15
|
breqtrd |
|- ( ( R e. Ring /\ X e. B ) -> X .|| ( N ` X ) ) |