Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
|- B = ( Base ` R ) |
2 |
|
dvdsr.2 |
|- .|| = ( ||r ` R ) |
3 |
|
dvdsrneg.5 |
|- N = ( invg ` R ) |
4 |
|
id |
|- ( X e. B -> X e. B ) |
5 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
1 6
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
8 |
1 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
9 |
5 7 8
|
syl2anc |
|- ( R e. Ring -> ( N ` ( 1r ` R ) ) e. B ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
1 2 10
|
dvdsrmul |
|- ( ( X e. B /\ ( N ` ( 1r ` R ) ) e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
12 |
4 9 11
|
syl2anr |
|- ( ( R e. Ring /\ X e. B ) -> X .|| ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) ) |
13 |
|
simpl |
|- ( ( R e. Ring /\ X e. B ) -> R e. Ring ) |
14 |
|
simpr |
|- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
15 |
1 10 6 3 13 14
|
ringnegl |
|- ( ( R e. Ring /\ X e. B ) -> ( ( N ` ( 1r ` R ) ) ( .r ` R ) X ) = ( N ` X ) ) |
16 |
12 15
|
breqtrd |
|- ( ( R e. Ring /\ X e. B ) -> X .|| ( N ` X ) ) |