Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
rngidpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
rngidpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
4 |
3
|
anassrs |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
5 |
4
|
eqeq1d |
|- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( ( x ( .r ` K ) y ) = z <-> ( x ( .r ` L ) y ) = z ) ) |
6 |
5
|
an32s |
|- ( ( ( ph /\ y e. B ) /\ x e. B ) -> ( ( x ( .r ` K ) y ) = z <-> ( x ( .r ` L ) y ) = z ) ) |
7 |
6
|
rexbidva |
|- ( ( ph /\ y e. B ) -> ( E. x e. B ( x ( .r ` K ) y ) = z <-> E. x e. B ( x ( .r ` L ) y ) = z ) ) |
8 |
7
|
pm5.32da |
|- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` K ) y ) = z ) <-> ( y e. B /\ E. x e. B ( x ( .r ` L ) y ) = z ) ) ) |
9 |
1
|
eleq2d |
|- ( ph -> ( y e. B <-> y e. ( Base ` K ) ) ) |
10 |
1
|
rexeqdv |
|- ( ph -> ( E. x e. B ( x ( .r ` K ) y ) = z <-> E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) ) |
11 |
9 10
|
anbi12d |
|- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` K ) y ) = z ) <-> ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) ) ) |
12 |
2
|
eleq2d |
|- ( ph -> ( y e. B <-> y e. ( Base ` L ) ) ) |
13 |
2
|
rexeqdv |
|- ( ph -> ( E. x e. B ( x ( .r ` L ) y ) = z <-> E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) |
14 |
12 13
|
anbi12d |
|- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` L ) y ) = z ) <-> ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) ) |
15 |
8 11 14
|
3bitr3d |
|- ( ph -> ( ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) <-> ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) ) |
16 |
15
|
opabbidv |
|- ( ph -> { <. y , z >. | ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) } = { <. y , z >. | ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) } ) |
17 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
18 |
|
eqid |
|- ( ||r ` K ) = ( ||r ` K ) |
19 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
20 |
17 18 19
|
dvdsrval |
|- ( ||r ` K ) = { <. y , z >. | ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) } |
21 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
22 |
|
eqid |
|- ( ||r ` L ) = ( ||r ` L ) |
23 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
24 |
21 22 23
|
dvdsrval |
|- ( ||r ` L ) = { <. y , z >. | ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) } |
25 |
16 20 24
|
3eqtr4g |
|- ( ph -> ( ||r ` K ) = ( ||r ` L ) ) |