| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( M = 0 -> ( M || N <-> 0 || N ) ) |
| 2 |
|
sq0i |
|- ( M = 0 -> ( M ^ 2 ) = 0 ) |
| 3 |
2
|
breq1d |
|- ( M = 0 -> ( ( M ^ 2 ) || ( N ^ 2 ) <-> 0 || ( N ^ 2 ) ) ) |
| 4 |
1 3
|
bibi12d |
|- ( M = 0 -> ( ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) <-> ( 0 || N <-> 0 || ( N ^ 2 ) ) ) ) |
| 5 |
|
nnabscl |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
| 6 |
|
breq2 |
|- ( N = 0 -> ( ( abs ` M ) || N <-> ( abs ` M ) || 0 ) ) |
| 7 |
|
sq0i |
|- ( N = 0 -> ( N ^ 2 ) = 0 ) |
| 8 |
7
|
breq2d |
|- ( N = 0 -> ( ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || 0 ) ) |
| 9 |
6 8
|
bibi12d |
|- ( N = 0 -> ( ( ( abs ` M ) || N <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) <-> ( ( abs ` M ) || 0 <-> ( ( abs ` M ) ^ 2 ) || 0 ) ) ) |
| 10 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 11 |
|
dvdssqlem |
|- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( abs ` M ) || ( abs ` N ) <-> ( ( abs ` M ) ^ 2 ) || ( ( abs ` N ) ^ 2 ) ) ) |
| 12 |
10 11
|
sylan2 |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( abs ` M ) || ( abs ` N ) <-> ( ( abs ` M ) ^ 2 ) || ( ( abs ` N ) ^ 2 ) ) ) |
| 13 |
|
nnz |
|- ( ( abs ` M ) e. NN -> ( abs ` M ) e. ZZ ) |
| 14 |
|
simpl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> N e. ZZ ) |
| 15 |
|
dvdsabsb |
|- ( ( ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 16 |
13 14 15
|
syl2an |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 17 |
|
nnsqcl |
|- ( ( abs ` M ) e. NN -> ( ( abs ` M ) ^ 2 ) e. NN ) |
| 18 |
17
|
nnzd |
|- ( ( abs ` M ) e. NN -> ( ( abs ` M ) ^ 2 ) e. ZZ ) |
| 19 |
|
zsqcl |
|- ( N e. ZZ -> ( N ^ 2 ) e. ZZ ) |
| 20 |
19
|
adantr |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( N ^ 2 ) e. ZZ ) |
| 21 |
|
dvdsabsb |
|- ( ( ( ( abs ` M ) ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) -> ( ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( abs ` ( N ^ 2 ) ) ) ) |
| 22 |
18 20 21
|
syl2an |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( abs ` ( N ^ 2 ) ) ) ) |
| 23 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 24 |
23
|
adantr |
|- ( ( N e. ZZ /\ N =/= 0 ) -> N e. CC ) |
| 25 |
|
abssq |
|- ( N e. CC -> ( ( abs ` N ) ^ 2 ) = ( abs ` ( N ^ 2 ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( abs ` N ) ^ 2 ) = ( abs ` ( N ^ 2 ) ) ) |
| 27 |
26
|
breq2d |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( ( abs ` M ) ^ 2 ) || ( ( abs ` N ) ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( abs ` ( N ^ 2 ) ) ) ) |
| 28 |
27
|
adantl |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( abs ` M ) ^ 2 ) || ( ( abs ` N ) ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( abs ` ( N ^ 2 ) ) ) ) |
| 29 |
22 28
|
bitr4d |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( ( abs ` N ) ^ 2 ) ) ) |
| 30 |
12 16 29
|
3bitr4d |
|- ( ( ( abs ` M ) e. NN /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( abs ` M ) || N <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 31 |
30
|
anassrs |
|- ( ( ( ( abs ` M ) e. NN /\ N e. ZZ ) /\ N =/= 0 ) -> ( ( abs ` M ) || N <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 32 |
|
dvds0 |
|- ( ( abs ` M ) e. ZZ -> ( abs ` M ) || 0 ) |
| 33 |
|
zsqcl |
|- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) ^ 2 ) e. ZZ ) |
| 34 |
|
dvds0 |
|- ( ( ( abs ` M ) ^ 2 ) e. ZZ -> ( ( abs ` M ) ^ 2 ) || 0 ) |
| 35 |
33 34
|
syl |
|- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) ^ 2 ) || 0 ) |
| 36 |
32 35
|
2thd |
|- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) || 0 <-> ( ( abs ` M ) ^ 2 ) || 0 ) ) |
| 37 |
13 36
|
syl |
|- ( ( abs ` M ) e. NN -> ( ( abs ` M ) || 0 <-> ( ( abs ` M ) ^ 2 ) || 0 ) ) |
| 38 |
37
|
adantr |
|- ( ( ( abs ` M ) e. NN /\ N e. ZZ ) -> ( ( abs ` M ) || 0 <-> ( ( abs ` M ) ^ 2 ) || 0 ) ) |
| 39 |
9 31 38
|
pm2.61ne |
|- ( ( ( abs ` M ) e. NN /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 40 |
5 39
|
sylan |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 41 |
|
absdvdsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 42 |
41
|
adantlr |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 43 |
|
zsqcl |
|- ( M e. ZZ -> ( M ^ 2 ) e. ZZ ) |
| 44 |
43
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( M ^ 2 ) e. ZZ ) |
| 45 |
|
absdvdsb |
|- ( ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) -> ( ( M ^ 2 ) || ( N ^ 2 ) <-> ( abs ` ( M ^ 2 ) ) || ( N ^ 2 ) ) ) |
| 46 |
44 19 45
|
syl2an |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( M ^ 2 ) || ( N ^ 2 ) <-> ( abs ` ( M ^ 2 ) ) || ( N ^ 2 ) ) ) |
| 47 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 48 |
|
abssq |
|- ( M e. CC -> ( ( abs ` M ) ^ 2 ) = ( abs ` ( M ^ 2 ) ) ) |
| 49 |
47 48
|
syl |
|- ( M e. ZZ -> ( ( abs ` M ) ^ 2 ) = ( abs ` ( M ^ 2 ) ) ) |
| 50 |
49
|
eqcomd |
|- ( M e. ZZ -> ( abs ` ( M ^ 2 ) ) = ( ( abs ` M ) ^ 2 ) ) |
| 51 |
50
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` ( M ^ 2 ) ) = ( ( abs ` M ) ^ 2 ) ) |
| 52 |
51
|
breq1d |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( ( abs ` ( M ^ 2 ) ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( abs ` ( M ^ 2 ) ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 54 |
46 53
|
bitrd |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( ( M ^ 2 ) || ( N ^ 2 ) <-> ( ( abs ` M ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 55 |
40 42 54
|
3bitr4d |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 56 |
55
|
an32s |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 57 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
| 58 |
|
sqeq0 |
|- ( N e. CC -> ( ( N ^ 2 ) = 0 <-> N = 0 ) ) |
| 59 |
23 58
|
syl |
|- ( N e. ZZ -> ( ( N ^ 2 ) = 0 <-> N = 0 ) ) |
| 60 |
57 59
|
bitr4d |
|- ( N e. ZZ -> ( 0 || N <-> ( N ^ 2 ) = 0 ) ) |
| 61 |
|
0dvds |
|- ( ( N ^ 2 ) e. ZZ -> ( 0 || ( N ^ 2 ) <-> ( N ^ 2 ) = 0 ) ) |
| 62 |
19 61
|
syl |
|- ( N e. ZZ -> ( 0 || ( N ^ 2 ) <-> ( N ^ 2 ) = 0 ) ) |
| 63 |
60 62
|
bitr4d |
|- ( N e. ZZ -> ( 0 || N <-> 0 || ( N ^ 2 ) ) ) |
| 64 |
63
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 || N <-> 0 || ( N ^ 2 ) ) ) |
| 65 |
4 56 64
|
pm2.61ne |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |