Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B || A ) |
2 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
3 |
2
|
adantl |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> p e. ZZ ) |
4 |
|
zsqcl |
|- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
5 |
3 4
|
syl |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
6 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. NN ) |
7 |
6
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. ZZ ) |
8 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. NN ) |
9 |
8
|
nnzd |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. ZZ ) |
10 |
|
dvdstr |
|- ( ( ( p ^ 2 ) e. ZZ /\ B e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) ) |
11 |
5 7 9 10
|
syl3anc |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) ) |
12 |
1 11
|
mpan2d |
|- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || B -> ( p ^ 2 ) || A ) ) |
13 |
12
|
reximdva |
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( E. p e. Prime ( p ^ 2 ) || B -> E. p e. Prime ( p ^ 2 ) || A ) ) |
14 |
|
isnsqf |
|- ( B e. NN -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) ) |
15 |
14
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) ) |
16 |
|
isnsqf |
|- ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
18 |
13 15 17
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 -> ( mmu ` A ) = 0 ) ) |
19 |
18
|
necon3d |
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) =/= 0 -> ( mmu ` B ) =/= 0 ) ) |