Metamath Proof Explorer


Theorem dvdssqf

Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015)

Ref Expression
Assertion dvdssqf
|- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) =/= 0 -> ( mmu ` B ) =/= 0 ) )

Proof

Step Hyp Ref Expression
1 simpl3
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B || A )
2 prmz
 |-  ( p e. Prime -> p e. ZZ )
3 2 adantl
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> p e. ZZ )
4 zsqcl
 |-  ( p e. ZZ -> ( p ^ 2 ) e. ZZ )
5 3 4 syl
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ )
6 simpl2
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. NN )
7 6 nnzd
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. ZZ )
8 simpl1
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. NN )
9 8 nnzd
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. ZZ )
10 dvdstr
 |-  ( ( ( p ^ 2 ) e. ZZ /\ B e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) )
11 5 7 9 10 syl3anc
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) )
12 1 11 mpan2d
 |-  ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || B -> ( p ^ 2 ) || A ) )
13 12 reximdva
 |-  ( ( A e. NN /\ B e. NN /\ B || A ) -> ( E. p e. Prime ( p ^ 2 ) || B -> E. p e. Prime ( p ^ 2 ) || A ) )
14 isnsqf
 |-  ( B e. NN -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) )
15 14 3ad2ant2
 |-  ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) )
16 isnsqf
 |-  ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) )
17 16 3ad2ant1
 |-  ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) )
18 13 15 17 3imtr4d
 |-  ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 -> ( mmu ` A ) = 0 ) )
19 18 necon3d
 |-  ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) =/= 0 -> ( mmu ` B ) =/= 0 ) )