| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 2 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 3 |
|
dvdssqim |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 5 |
|
sqgcd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
| 6 |
5
|
adantr |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
| 7 |
|
nnsqcl |
|- ( M e. NN -> ( M ^ 2 ) e. NN ) |
| 8 |
|
nnsqcl |
|- ( N e. NN -> ( N ^ 2 ) e. NN ) |
| 9 |
|
gcdeq |
|- ( ( ( M ^ 2 ) e. NN /\ ( N ^ 2 ) e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 11 |
10
|
biimpar |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) = ( M ^ 2 ) ) |
| 12 |
6 11
|
eqtrd |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) ) |
| 13 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
| 14 |
1 2 13
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN0 ) |
| 15 |
14
|
nn0red |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. RR ) |
| 16 |
14
|
nn0ge0d |
|- ( ( M e. NN /\ N e. NN ) -> 0 <_ ( M gcd N ) ) |
| 17 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 18 |
17
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> M e. RR ) |
| 19 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 20 |
19
|
nn0ge0d |
|- ( M e. NN -> 0 <_ M ) |
| 21 |
20
|
adantr |
|- ( ( M e. NN /\ N e. NN ) -> 0 <_ M ) |
| 22 |
|
sq11 |
|- ( ( ( ( M gcd N ) e. RR /\ 0 <_ ( M gcd N ) ) /\ ( M e. RR /\ 0 <_ M ) ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
| 23 |
15 16 18 21 22
|
syl22anc |
|- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
| 24 |
23
|
adantr |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( ( M gcd N ) ^ 2 ) = ( M ^ 2 ) <-> ( M gcd N ) = M ) ) |
| 25 |
12 24
|
mpbid |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( M gcd N ) = M ) |
| 26 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 27 |
1 2 26
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 28 |
27
|
adantr |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 29 |
28
|
simprd |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> ( M gcd N ) || N ) |
| 30 |
25 29
|
eqbrtrrd |
|- ( ( ( M e. NN /\ N e. NN ) /\ ( M ^ 2 ) || ( N ^ 2 ) ) -> M || N ) |
| 31 |
30
|
ex |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) || ( N ^ 2 ) -> M || N ) ) |
| 32 |
4 31
|
impbid |
|- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |