Step |
Hyp |
Ref |
Expression |
1 |
|
zsubcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
2 |
1
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
3 |
|
dvds2sub |
|- ( ( K e. ZZ /\ M e. ZZ /\ ( M - N ) e. ZZ ) -> ( ( K || M /\ K || ( M - N ) ) -> K || ( M - ( M - N ) ) ) ) |
4 |
2 3
|
syld3an3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || ( M - N ) ) -> K || ( M - ( M - N ) ) ) ) |
5 |
4
|
ancomsd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || M ) -> K || ( M - ( M - N ) ) ) ) |
6 |
5
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> K || ( M - ( M - N ) ) ) |
7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
8 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
9 |
|
nncan |
|- ( ( M e. CC /\ N e. CC ) -> ( M - ( M - N ) ) = N ) |
10 |
7 8 9
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - ( M - N ) ) = N ) |
11 |
10
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M - ( M - N ) ) = N ) |
12 |
11
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> ( M - ( M - N ) ) = N ) |
13 |
6 12
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || M ) ) -> K || N ) |
14 |
13
|
expr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || M -> K || N ) ) |
15 |
|
dvds2add |
|- ( ( K e. ZZ /\ ( M - N ) e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || N ) -> K || ( ( M - N ) + N ) ) ) |
16 |
2 15
|
syld3an2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M - N ) /\ K || N ) -> K || ( ( M - N ) + N ) ) ) |
17 |
16
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> K || ( ( M - N ) + N ) ) |
18 |
|
npcan |
|- ( ( M e. CC /\ N e. CC ) -> ( ( M - N ) + N ) = M ) |
19 |
7 8 18
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M - N ) + N ) = M ) |
20 |
19
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M - N ) + N ) = M ) |
21 |
20
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> ( ( M - N ) + N ) = M ) |
22 |
17 21
|
breqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K || ( M - N ) /\ K || N ) ) -> K || M ) |
23 |
22
|
expr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || N -> K || M ) ) |
24 |
14 23
|
impbid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ K || ( M - N ) ) -> ( K || M <-> K || N ) ) |