| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsubcl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
| 2 |
1
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N - M ) e. ZZ ) |
| 3 |
|
dvdsadd |
|- ( ( M e. ZZ /\ ( N - M ) e. ZZ ) -> ( M || ( N - M ) <-> M || ( M + ( N - M ) ) ) ) |
| 4 |
2 3
|
syldan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( N - M ) <-> M || ( M + ( N - M ) ) ) ) |
| 5 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 6 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 7 |
|
pncan3 |
|- ( ( M e. CC /\ N e. CC ) -> ( M + ( N - M ) ) = N ) |
| 8 |
5 6 7
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + ( N - M ) ) = N ) |
| 9 |
8
|
breq2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + ( N - M ) ) <-> M || N ) ) |
| 10 |
4 9
|
bitr2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( N - M ) ) ) |