| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3simpa |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ M e. ZZ ) ) |
| 2 |
|
3simpc |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 3 |
|
3simpb |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ N e. ZZ ) ) |
| 4 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
| 5 |
4
|
adantl |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 6 |
|
oveq2 |
|- ( ( x x. K ) = M -> ( y x. ( x x. K ) ) = ( y x. M ) ) |
| 7 |
6
|
adantr |
|- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( y x. ( x x. K ) ) = ( y x. M ) ) |
| 8 |
|
eqeq2 |
|- ( ( y x. M ) = N -> ( ( y x. ( x x. K ) ) = ( y x. M ) <-> ( y x. ( x x. K ) ) = N ) ) |
| 9 |
8
|
adantl |
|- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( ( y x. ( x x. K ) ) = ( y x. M ) <-> ( y x. ( x x. K ) ) = N ) ) |
| 10 |
7 9
|
mpbid |
|- ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( y x. ( x x. K ) ) = N ) |
| 11 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 12 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 13 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 14 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( ( x x. y ) x. K ) = ( x x. ( y x. K ) ) ) |
| 15 |
|
mul12 |
|- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( x x. ( y x. K ) ) = ( y x. ( x x. K ) ) ) |
| 16 |
14 15
|
eqtrd |
|- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 17 |
11 12 13 16
|
syl3an |
|- ( ( x e. ZZ /\ y e. ZZ /\ K e. ZZ ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 18 |
17
|
3comr |
|- ( ( K e. ZZ /\ x e. ZZ /\ y e. ZZ ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 19 |
18
|
3expb |
|- ( ( K e. ZZ /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 20 |
19
|
3ad2antl1 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) x. K ) = ( y x. ( x x. K ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. y ) x. K ) = N <-> ( y x. ( x x. K ) ) = N ) ) |
| 22 |
10 21
|
imbitrrid |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. K ) = M /\ ( y x. M ) = N ) -> ( ( x x. y ) x. K ) = N ) ) |
| 23 |
1 2 3 5 22
|
dvds2lem |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || N ) -> K || N ) ) |