Description: The divides relation is transitive, a deduction version of dvdstr . (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdstrd.1 | |- ( ph -> K e. ZZ ) |
|
| dvdstrd.2 | |- ( ph -> M e. ZZ ) |
||
| dvdstrd.3 | |- ( ph -> N e. ZZ ) |
||
| dvdstrd.4 | |- ( ph -> K || M ) |
||
| dvdstrd.5 | |- ( ph -> M || N ) |
||
| Assertion | dvdstrd | |- ( ph -> K || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdstrd.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | dvdstrd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | dvdstrd.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | dvdstrd.4 | |- ( ph -> K || M ) |
|
| 5 | dvdstrd.5 | |- ( ph -> M || N ) |
|
| 6 | dvdstr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ M || N ) -> K || N ) ) |
|
| 7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( K || M /\ M || N ) -> K || N ) ) |
| 8 | 4 5 7 | mp2and | |- ( ph -> K || N ) |