| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsunit.1 |
|- U = ( Unit ` R ) |
| 2 |
|
dvdsunit.3 |
|- .|| = ( ||r ` R ) |
| 3 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
4 2
|
dvdsrtr |
|- ( ( R e. Ring /\ Y .|| X /\ X .|| ( 1r ` R ) ) -> Y .|| ( 1r ` R ) ) |
| 6 |
5
|
3expia |
|- ( ( R e. Ring /\ Y .|| X ) -> ( X .|| ( 1r ` R ) -> Y .|| ( 1r ` R ) ) ) |
| 7 |
3 6
|
sylan |
|- ( ( R e. CRing /\ Y .|| X ) -> ( X .|| ( 1r ` R ) -> Y .|| ( 1r ` R ) ) ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
1 8 2
|
crngunit |
|- ( R e. CRing -> ( X e. U <-> X .|| ( 1r ` R ) ) ) |
| 10 |
9
|
adantr |
|- ( ( R e. CRing /\ Y .|| X ) -> ( X e. U <-> X .|| ( 1r ` R ) ) ) |
| 11 |
1 8 2
|
crngunit |
|- ( R e. CRing -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
| 12 |
11
|
adantr |
|- ( ( R e. CRing /\ Y .|| X ) -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
| 13 |
7 10 12
|
3imtr4d |
|- ( ( R e. CRing /\ Y .|| X ) -> ( X e. U -> Y e. U ) ) |
| 14 |
13
|
3impia |
|- ( ( R e. CRing /\ Y .|| X /\ X e. U ) -> Y e. U ) |