Step |
Hyp |
Ref |
Expression |
1 |
|
divides |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. k e. ZZ ( k x. M ) = N ) ) |
2 |
1
|
3adant2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> E. k e. ZZ ( k x. M ) = N ) ) |
3 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
4 |
3
|
3ad2ant3 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> N e. CC ) |
5 |
4
|
adantr |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> N e. CC ) |
6 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
7 |
6
|
adantl |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> k e. CC ) |
8 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
9 |
8
|
3ad2ant1 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> M e. CC ) |
10 |
9
|
adantr |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> M e. CC ) |
11 |
|
simpl2 |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> M =/= 0 ) |
12 |
5 7 10 11
|
divmul3d |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( N / M ) = k <-> N = ( k x. M ) ) ) |
13 |
|
eqcom |
|- ( N = ( k x. M ) <-> ( k x. M ) = N ) |
14 |
12 13
|
bitrdi |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( N / M ) = k <-> ( k x. M ) = N ) ) |
15 |
14
|
biimprd |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( k x. M ) = N -> ( N / M ) = k ) ) |
16 |
15
|
impr |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> ( N / M ) = k ) |
17 |
|
simprl |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> k e. ZZ ) |
18 |
16 17
|
eqeltrd |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> ( N / M ) e. ZZ ) |
19 |
18
|
rexlimdvaa |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( E. k e. ZZ ( k x. M ) = N -> ( N / M ) e. ZZ ) ) |
20 |
|
simpr |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> ( N / M ) e. ZZ ) |
21 |
|
simp2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> M =/= 0 ) |
22 |
4 9 21
|
divcan1d |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( ( N / M ) x. M ) = N ) |
23 |
22
|
adantr |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> ( ( N / M ) x. M ) = N ) |
24 |
|
oveq1 |
|- ( k = ( N / M ) -> ( k x. M ) = ( ( N / M ) x. M ) ) |
25 |
24
|
eqeq1d |
|- ( k = ( N / M ) -> ( ( k x. M ) = N <-> ( ( N / M ) x. M ) = N ) ) |
26 |
25
|
rspcev |
|- ( ( ( N / M ) e. ZZ /\ ( ( N / M ) x. M ) = N ) -> E. k e. ZZ ( k x. M ) = N ) |
27 |
20 23 26
|
syl2anc |
|- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> E. k e. ZZ ( k x. M ) = N ) |
28 |
27
|
ex |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( ( N / M ) e. ZZ -> E. k e. ZZ ( k x. M ) = N ) ) |
29 |
19 28
|
impbid |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( E. k e. ZZ ( k x. M ) = N <-> ( N / M ) e. ZZ ) ) |
30 |
2 29
|
bitrd |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |