Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
2 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
3 |
1 2
|
jca |
|- ( M e. NN -> ( M e. ZZ /\ M =/= 0 ) ) |
4 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
5 |
4
|
3expa |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
6 |
3 5
|
sylan |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
7 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
8 |
|
nnrp |
|- ( M e. NN -> M e. RR+ ) |
9 |
|
mod0 |
|- ( ( N e. RR /\ M e. RR+ ) -> ( ( N mod M ) = 0 <-> ( N / M ) e. ZZ ) ) |
10 |
7 8 9
|
syl2anr |
|- ( ( M e. NN /\ N e. ZZ ) -> ( ( N mod M ) = 0 <-> ( N / M ) e. ZZ ) ) |
11 |
6 10
|
bitr4d |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N mod M ) = 0 ) ) |