Metamath Proof Explorer


Theorem dvdszrcl

Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion dvdszrcl
|- ( X || Y -> ( X e. ZZ /\ Y e. ZZ ) )

Proof

Step Hyp Ref Expression
1 df-dvds
 |-  || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) }
2 opabssxp
 |-  { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. z e. ZZ ( z x. x ) = y ) } C_ ( ZZ X. ZZ )
3 1 2 eqsstri
 |-  || C_ ( ZZ X. ZZ )
4 3 brel
 |-  ( X || Y -> ( X e. ZZ /\ Y e. ZZ ) )